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Chapter I1-1
Water Wave Mechanics

11-1-1. Introduction

a. Waves on the surface of the ocean with periods of 3 to 25 sec are primarily generated by winds and
are a fundamental feature of coastal regions of the world. Other wave motions exist on the ocean including
internal waves, tides, and edge waves. For the remainder of this chapter, unless otherwise indicated, the term
waves will apply only to surface gravity waves in the wind wave range of 3 to 25 sec.

b. Knowledge of these waves and the forces they generate is essential for the design of coastal projects
since they are the major factor that determines the geometry of beaches, the planning and design of marinas,
waterways, shore protection measures, hydraulic structures, and other civil and military coastal works.
Estimates of wave conditions are needed in almost all coastal engineering studies. The purpose of this chapter
is to give engineers theories and mathematical formulae for describing ocean surface waves and the forces,
accelerations, and velocities due to them. This chapter is organized into two sections: Regular Waves and
Irregular Waves.

c. Inthe Regular Waves section, the objective is to provide a detailed understanding of the mechanics
of a wave field through examination of waves of constant height and period. In the lrregular Waves section,
the objective is to describe statistical methods for analyzing irregular waves (wave systems where successive
waves may have differing periods and heights) which are more descriptive of the waves seen in nature.

d. Inlooking at the sea surface, it is typically irregular and three-dimensional (3-D). The sea surface
changes in time, and thus, it is unsteady. At this time, this complex, time-varying 3-D surface cannot be
adequately described in its full complexity; neither can the velocities, pressures, and accelerations of the
underlying water required for engineering calculations. In order to arrive at estimates of the required
parameters, a number of simplifying assumptions must be made to make the problems tractable, reliable and
helpful through comparison to experiments and observations. Some of the assumptions and approximations
that are made to describe the 3-D, time-dependent complex sea surface in a simpler fashion for engineering
works may be unrealistic, but necessary for mathematical reasons.

e. The Regular Waves section of this chapter begins with the simplest mathematical representation
assuming ocean waves are two-dimensional (2-D), small in amplitude, sinusoidal, and progressively
definable by their wave height and period in a given water depth. In this simplest representation of ocean
waves, wave motions and displacements, kinematics (that is, wave velocities and accelerations), and dynamics
(that is, wave pressures and resulting forces and moments) will be determined for engineering design
estimates. When wave height becomes larger, the simple treatment may not be adequate. The next part of
the Regular Waves section considers 2-D approximation of the ocean surface to deviate from a pure sinusoid.
This representation requires using more mathematically complicated theories. These theories become
nonlinear and allow formulation of waves that are not of purely sinusoidal in shape; for example, waves
having the flatter troughs and peaked crests typically seen in shallow coastal waters when waves are relatively
high.

f- The Irregular Waves section of this chapter is devoted to an alternative description of ocean waves.
Statistical methods for describing the natural time-dependent three-dimensional characteristics of real wave
systems are presented. A complete 3-D representation of ocean waves requires considering the sea surface
as an irregular wave train with random characteristics. To quantify this randomness of ocean waves, the
Irregular Waves section employs statistical and probabilistic theories. Even with this approach,
simplifications are required. One approach is to transform the sea surface using Fourier theory into
summation of simple sine waves and then to define a wave’s characteristics in terms of its spectrum. This

Water Wave Mechanics 11-1-1



EM 1110-2-1100 (Part Il)
30 Apr 02

allows treatment of the variability of waves with respect to period and direction of travel. The second
approach is to describe a wave record at a point as a sequence of individual waves with different heights and
periods and then to consider the variability of the wave field in terms of the probability of individual waves.

g. Atthepresenttime, practicing coastal engineers must use a combination of these approaches to obtain
information for design. For example, information from the lrregular Waves section will be used to determine
the expected range of wave conditions and directional distributions of wave energy in order to select an
individual wave height and period for the problem under study. Then procedures from the Regular Waves
section will be used to characterize the kinematics and dynamics that might be expected. However, it should
be noted that the procedures for selecting and using irregular wave conditions remain an area of some
uncertainty.

h. The major generating force for waves is the wind acting on the air-sea interface. A significant
amount of wave energy is dissipated in the nearshore region and on beaches. Wave energy forms beaches;
sorts bottom sediments on the shore face; transports bottom materials onshore, offshore, and alongshore; and
exerts forces upon coastal structures. A basic understanding of the fundamental physical processes in the
generation and propagation of surface waves must precede any attempt to understand complex water motion
in seas, lakes and waterways. The Regular Waves section of this chapter outlines the fundamental principles
governing the mechanics of wave motion essential in the planning and design of coastal works. The Irregular
Waves section of this chapter discusses the applicable statistical and probabilistic theories.

i. Detailed descriptions of the basic equations for water mechanics are available in several textbooks
(see for example, Kinsman 1965; Stoker 1957; Ippen 1966; Le Méhauté 1976; Phillips 1977; Crapper 1984;
Mei 1991; Dean and Dalrymple 1991). The Regular Waves section of this chapter provides only an
introduction to wave mechanics, and it focuses on simple water wave theories for coastal engineers. Methods
are discussed for estimating wave surface profiles, water particle motion, wave energy, and wave
transformations due to interaction with the bottom and with structures.

Jj. Thesimplest wave theory is the first-order, small-amplitude, or Airy wave theory which will hereafter
be called linear theory. Many engineering problems can be handled with ease and reasonable accuracy by
this theory. For convenience, prediction methods in coastal engineering generally have been based on simple
waves. For some situations, simple theories provide acceptable estimates of wave conditions.

k. When waves become large or travel toward shore into shallow water, higher-order wave theories are
often required to describe wave phenomena. These theories represent nonlinear waves. The linear theory
that is valid when waves are infinitesimally small and their motion is small also provides some insight for
finite-amplitude periodic waves (nonlinear). However, the linear theory cannot account for the fact that wave
crests are higher above the mean water line than the troughs are below the mean water line. Results obtained
from the various theories should be carefully interpreted for use in the design of coastal projects or for the
description of coastal environment.

. Any basic physical description of a water wave involves both its surface form and the water motion
beneath the surface. A wave that can be described in simple mathematical terms is called a simple wave.
Waves comprised of several components and difficult to describe in form or motion are termed wave trains
or complex waves. Sinusoidal or monochromatic waves are examples of simple waves, since their surface
profile can be described by a single sine or cosine function. A wave is periodic if its motion and surface
profile recur in equal intervals of time termed the wave period. A wave form that moves horizontally relative
to a fixed point is called a progressive wave and the direction in which it moves is termed the direction of
wave propagation. A progressive wave is called wave of permanent form if it propagates without
experiencing any change in shape.

11-1-2 Water Wave Mechanics
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m. Water waves are considered oscillatory or nearly oscillatory if the motion described by the water
particles is circular orbits that are closed or nearly closed for each wave period. The linear theory represents
pure oscillatory waves. Waves defined by finite-amplitude wave theories are not pure oscillatory waves but
still periodic since the fluid is moved in the direction of wave advance by each successive wave. This motion
is termed mass transport of the waves. When water particles advance with the wave and do not return to their
original position, the wave is called a wave of translation. A solitary wave is an example of a wave of
translation.

n. Itisimportant in coastal practice to differentiate between two types of surface waves. These are seas
and swells. Seas refer to short-period waves still being created by winds. Swells refer to waves that have
moved out of the generating area. In general, swells are more regular waves with well-defined long crests
and relatively long periods.

o. The growth of wind-generated oceanic waves is not indefinite. The point when waves stop growing
is termed a fully developed sea condition. Wind energy is imparted to the water leading to the growth of
waves; however, after a point, the energy imparted to the waters is dissipated by wave breaking. Seas are
short-crested and irregular and their periods are within the 3- to 25- sec range. Seas usually have shorter
periods and lengths, and their surface appears much more disturbed than for swells. Waves assume a more
orderly state with the appearance of definite crests and troughs when they are no longer under the influence
of winds (swell).

p. To an observer at a large distance from a storm, swells originating in a storm area will appear to be
almost unidirectional (i.e., they propagate in a predominant direction) and long-crested (i.e., they have well-
defined and distinctly separated crests). Although waves of different periods existed originally together in
the generation area (seas), in time the various wave components in the sea separate from one another. Longer
period waves move faster and reach distant sites first. Shorter period components may reach the site several
days later. In the wave generation area, energy is transferred from shorter period waves to the longer waves.
Waves can travel hundreds or thousands of kilometers without much loss of energy. However, some wave
energy is dissipated internally within the fluid, by interaction with the air above, by turbulence upon breaking,
and by percolation and friction with the seabed. Short-period components lose their energy more readily than
long-period components. As a consequence of these processes, the periods of swell waves tend to be
somewhat longer than seas. Swells typically have periods greater than 10 sec.

I-1-2. Regular Waves

a. Introduction. Wave theories are approximations to reality. They may describe some phenomena
well under certain conditions that satisfy the assumptions made in their derivation. They may fail to describe
other phenomena that violate those assumptions. In adopting a theory, care must be taken to ensure that the
wave phenomenon of interest is described reasonably well by the theory adopted, since shore protection
design depends on the ability to predict wave surface profiles and water motion, and on the accuracy of such
predictions.
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b. Definition of wave parameters.

(1) A progressive wave may be represented by the variables x (spatial) and ¢ (temporal) or by their
combination (phase), defined as 6 = kx - wt, where k and w are described in the following paragraphs. The
values of 6 vary between 0 and 27. Since the f-representation is a simple and compact notation, it will be
used in this chapter. Figure II-1-1 depicts parameters that define a simple, progressive wave as it passes a
fixed point in the ocean. A simple, periodic wave of permanent form propagating over a horizontal bottom
may be completely characterized by the wave height H wavelength L and water depth d.

Z

Direction of Propagation

L

s U, e,
Bottom, z=-4d
/ X
Z Z Z L
Figure I1I-1-1. Definition of terms - elementary, sinusoidal, progressive wave

(2) As shown in Figure II-1-1, the highest point of the wave is the crest and the lowest point is the
trough. For linear or small-amplitude waves, the height of the crest above the still-water level (SWL) and
the distance of the trough below the SWL are each equal to the wave amplitude a. Therefore a = H/2, where
H = the wave height. The time interval between the passage of two successive wave crests or troughs at a
given point is the wave period T. The wavelength L is the horizontal distance between two identical points
on two successive wave crests or two successive wave troughs.

(3) Other wave parameters include @ =27/T the angular or radian frequency, the wave number k = 2r/L,
the phase velocity or wave celerity C= L/T = w/k, the wave steepness ¢ = H/L, the relative depth d/L, and the
relative wave height H/d. These are the most common parameters encountered in coastal practice. Wave
motion can be defined in terms of dimensionless parameters H/L, H/d, and d/L; these are often used in
practice. The dimensionless parameters ka and kd, preferred in research works, can be substituted for H/L
and d/L, respectively, since these differ only by a constant factor 2x from those preferred by engineers.
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¢. Linear wave theory.
(1) Introduction.

(a) The most elementary wave theory is the small-amplitude or linear wave theory. This theory,
developed by Airy (1845), is easy to apply, and gives a reasonable approximation of wave characteristics for
a wide range of wave parameters. A more complete theoretical description of waves may be obtained as the
sum of many successive approximations, where each additional term in the series is a correction to preceding
terms. For some situations, waves are better described by these higher-order theories, which are usually
referred to as finite-amplitude wave theories (Mei 1991, Dean and Dalrymple 1991). Although there are
limitations to its applicability, linear theory can still be useful provided the assumptions made in developing
this simple theory are not grossly violated.

(b) The assumptions made in developing the linear wave theory are:

® The fluid is homogeneous and incompressible; therefore, the density p is a constant.
® Surface tension can be neglected.

® Coriolis effect due to the earth's rotation can be neglected.

® Pressure at the free surface is uniform and constant.
® The fluid is ideal or inviscid (lacks viscosity).

® The particular wave being considered does not interact with any other water motions. The flow is
irrotational so that water particles do not rotate (only normal forces are important and shearing forces
are negligible).

® The bed is a horizontal, fixed, impermeable boundary, which implies that the vertical velocity at the
bed is zero.

® The wave amplitude is small and the waveform is invariant in time and space.
® Waves are plane or long-crested (two-dimensional).

(c) The first three assumptions are valid for virtually all coastal engineering problems. It is necessary
to relax the fourth, fifth, and sixth assumptions for some specialized problems not considered in this manual.
Relaxing the three final assumptions is essential in many problems, and is considered later in this chapter.

(d) The assumption ofirrotationality stated as the sixth assumption above allows the use of a mathemati-
cal function termed the velocity potential @. The velocity potential is a scaler function whose gradient (i.e.,
the rate of change of @ relative to the x-and z-coordinates in two dimensions where x = horizontal,
z = vertical) at any point in fluid is the velocity vector. Thus,
oD

y - 90 1-1-1
= (-1-1)

is the fluid velocity in the x-direction, and
oL
W = —
oz

is the fluid velocity in the z-direction. © has the units of length squared divided by time. Consequently, if
D(x, z, t) is known over the flow field, then fluid particle velocity components # and w can be found.

(11-1-2)
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(e) Theincompressible assumption (a) above implies that there is another mathematical function termed
the stream function ¥. Some wave theories are formulated in terms of the stream function ¥, which is
orthogonal to the potential function ®@. Lines of constant values of the potential function (equipotential lines)
and lines of constant values of the stream function are mutually perpendicular or orthogonal. Consequently,
if ® is known, ¥ can be found, or vice versa, using the equations

o0 _ ¥ (I1-1-3)
ox oz

o _ ¥ (I1-1-4)
oz ox

termed the Cauchy-Riemann conditions (Whitham 1974; Milne-Thompson 1976). Both ® and WV satisfy the
Laplace equation which governs the flow of an ideal fluid (inviscid and incompressible fluid). Thus, under
the assumptions outlined above, the Laplace equation governs the flow beneath waves. The Laplace equation
in two dimensions with x = horizontal, and z = vertical axes in terms of velocity potential @ is given by

2 2
Fo P (I1-1-5)
ox? 0z?

(f) In terms of the stream function, ¥, Laplace's equation becomes

2 2
I¥ ¥ (I1-1-6)
ox? 0z?

(g) The linear theory formulation is usually developed in terms of the potential function, ®.

In applying the seventh assumption to waves in water of varying depth (encountered when waves approach
a beach), the local depth is usually used. This can be justified, but not without difficulty, for most practical
cases in which the bottom slope is flatter than about 1 on 10. A progressive wave moving into shallow water
will change its shape significantly. Effects due to the wave transformations are addressed in Parts 1I-3 and
11-4.

(h) The most fundamental description of a simple sinusoidal oscillatory wave is by its length L (the
horizontal distance between corresponding points on two successive waves), height H (the vertical distance
to its crest from the preceding trough), period 7 (the time for two successive crests to pass a given point), and
depth d (the distance from the bed to SWL).

(i) Figure 1I-1-1 shows a two-dimensional, simple progressive wave propagating in the positive x-
direction, using the symbols presented above. The symbol # denotes the displacement of the water surface
relative to the SWL and is a function of x and time ¢. At the wave crest, # is equal to the amplitude of the
wave a, or one-half the wave height H/2.

(2) Wave celerity, length, and period.
(a) The speed at which a wave form propagates is termed the phase velocity or wave celerity C. Since

the distance traveled by a wave during one wave period is equal to one wavelength, wave celerity can be
related to the wave period and length by
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c-Lt 1I-1-7
T ( )
(b) An expression relating wave celerity to wavelength and water depth is given by
C = | &L tanh| 2 (I1-1-8)
21 L

(¢) Equation II-1-8 is termed the dispersion relation since it indicates that waves with different periods
travel at different speeds. For a situation where more than one wave is present, the longer period wave will
travel faster. From Equation II-1-7, it is seen that Equation 1I-1-8 can be written as

C = &r tanh 2nd (11-1-9)
2n L

(d) The values 2a/L and 27/T are called the wave number k and the wave angular frequency o,
respectively. From Equation II-1-7 and II-1-9, an expression for wavelength as a function of depth and wave
period may be obtained as

2
L= & ann| 2 - 2T tanh (ka) (11-1-10)
2n L ®

(e) Use of Equation II-1-10 involves some difficulty since the unknown L appears on both sides of the
equation. Tabulated values of d/L and d/L, (SPM 1984) where L, is the deepwater wavelength may be used
to simplify the solution of Equation 1I-1-10. Eckart (1952) gives an approximate expression for Equa-
tion II-1-10, which is correct to within about 10 percent. This expression is given by

2 2
L~ 8 |tann | 44 (-1-11)
2n T> g

(f) Equation II-1-11 explicitly gives L in terms of wave period T and is sufficiently accurate for many
engineering calculations. The maximum error 10 percent occurs when d/L = 1/2. There are several other
approximations for solving Equation II-1-10 (Hunt 1979; Venezian and Demirbilek 1979; Wu and Thornton
1986; Fenton and McKee 1990).

(g) Gravity waves may also be classified by the water depth in which they travel. The following
classifications are made according to the magnitude of d/L and the resulting limiting values taken by the
function tanh (2rd/L). Note that as the argument of the hyperbolic tangent kd = 2td/L gets large, the tanh (kd)
approaches 1, and for small values of kd, tanh (kd) = kd.

(h) Water waves are classified in Table II-1-1 based on the relative depth criterion d/L.
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Table 11-1-1

Classification of Water Waves

Classification d/L kd tanh (kd)
Deep water 1/2 t0 {0 o =1
Transitional 1/20 to 1/2 m/10to tanh (kd)
Shallow water 0to 1/20 0 to /10 = kd

(1) In deep water, tanh (kd) approaches unity, Equations II-1-7 and II-1-8 reduce to

gLy, L,
C, =,|— = — 1I-1-12
0 2n T ( )

and Equation II-1-9 becomes

c, - &1 (11-1-13)
2n

(j) Although deep water actually occurs at an infinite depth, tanh (kd), for most practical purposes,
approaches unity at a much smaller d/L. For a relative depth of one-half (i.e., when the depth is one-half the
wavelength), tanh (2nd/L) = 0.9964.

(k) When the relative depth d/L is greater than one-half, the wave characteristics are virtually
independent of depth. Deepwater conditions are indicated by the subscript 0 as in L, and C, except that the
period 7T remains constant and independent of depth for oscillatory waves, and therefore, the subscript for
wave period is omitted (Ippen 1966). In the SI system (System International or metric system of units) where
units of meters and seconds are used, the constant g/27 is equal to 1.56 m/s*, and

c, - &L - 28 7 1567 mis (I1-1-14)
2n i
and
2
L, - &7 - 28 2 5672 m (I1-1-15)
21 i

(I) If units of feet and seconds are specified, the constant g/27 is equal to 5.12 ft/s*, and

c, - 8T - 5127 fus (11-1-16)
T
and
2
L, - gz—T - 51272 fi (I1-1-17)
v

(m) If Equations II-1-14 and II-1-15 are used to compute wave celerity when the relative depth is d/L =
0.25, the resulting error will be about 9 percent. It is evident that a relative depth of 0.5 is a satisfactory
boundary separating deepwater waves from waves in water of transitional depth. If a wave is traveling in
transitional depths, Equations II-1-8 and II-1-9 must be used without simplification. As a rule of thumb,
Equation I1-1-8 and II-1-9 must be used when the relative depth is between 0.5 and 0.04.
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(n) When the relative water depth becomes shallow, i.e., 2nd/L < 1/4 or d/L < 1/25, Equation II-1-8 can
be simplified to

C = ad (II-1-18)

(o) Waves sufficiently long such that Equation II-1-18 may be applied are termed long waves. This
relation is attributed to Lagrange. Thus, when a wave travels in shallow water, wave celerity depends only
on water depth.

(p) Insummary, as a wind wave passes from deep water to the beach its speed and length are first only
a function of its period (or frequency); then as the depth becomes shallower relative to its length, the length
and speed are dependent upon both depth and period; and finally the wave reaches a point where its length
and speed are dependent only on depth (and not frequency).

(3) The sinusoidal wave profile. The equation describing the free surface as a function of time ¢ and
horizontal distance x for a simple sinusoidal wave can be shown to be
n = a cos (kx - of) = H s | 22 - 280 4 cos 0 (11-1-19)
2 L T
where 7 is the elevation of the water surface relative to the SWL, and H/2 is one-half the wave height equal
to the wave amplitude a. This expression represents a periodic, sinusoidal, progressive wave traveling in the
positive x-direction. For a wave moving in the negative x-direction, the minus sign before 2xt/T is replaced

with a plus sign. When 6 = 2zx/L - 2nt/T) equals 0, n/2, &, 3n/2, the corresponding values of n are H/2, 0,
-H/2, and 0, respectively (Figure 1I-1-1).

(4) Some useful functions.

(a) Dividing Equation II-1-9 by Equation II-1-13, and Equation I1-1-10 by Equation II-1-15 yields,

C L | F9) - anh ka (11-1-20)
L, L

Co

(b) If both sides of Equation II-1-20 are multiplied by d/L, it becomes

4 _d | 2 - 9 anh kd (I-1-21)
L, L L L

(¢) The terms d/L, and d/L and other useful functions such as kd = 2zd/L and tanh (kd) have been
tabulated by Wiegel (1954) as a function of d/L, (see also SPM 1984, Appendix C, Tables C-1 and C-2).
These functions simplify the solution of wave problems described by the linear theory and are summarized
in Figure II-1-5. An example problem illustrating the use of linear wave theory equations and the figures and
tables mentioned follows.
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EXAMPLE PROBLEM II-1-1

FIND:
The wave celerities C and lengths L corresponding to depths d = 200 meters (656 ft) and d =3 m (9.8 ft).

GIVEN:
A wave with a period 7= 10 seconds is propagated shoreward over a uniformly sloping shelf from a depth

d =200 m (656 ft) to a depth d =3 m (9.8 ft).

SOLUTION:
Using Equation II-1-15,

L, = 1.56T% = 1.56(10)* = 156 m (512 fi)

For d=200 m

4
LO

Note that for values of

therefore,
L =L, =156 m (512 ft) (deepwater wave, since% > %)
which is in agreement with Figure II-1-5.

By Equation II-1-7

C - % - 15.6 mls (512 fils)

-3

d = 0.0192
L, 156

Example Problem II-1-1 (Continued)
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Example Problem II-1-1 (Concluded)
By trial-and-error solution (Equation II-1-21) with d/L, it is found that
4 _ 005641
L

3 = 53.2 m (174 f?) | transitional depth, sinceL <41

~ 0.05641 25 L 2

which can be written in terms of L, as

therefore

L = 156 |tanh| 2™G)
156

L = 156 4/tanh(0.1208)

L = 156 /0.1202 = 54.1 m (177.5 ft)

which compares with L = 53.3 m obtained using Equations II-1-8, II-1-9, or II-1-21. The error in this case is
1.5 percent. Note that Figure II-1-5 or Plate C-1 (SPM 1984) could also have been used to determine d/L.
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(5) Local fluid velocities and accelerations.

(a) Inwave force studies, the local fluid velocities and accelerations for various values of z and ¢ during
the passage of a wave must often be found. The horizontal component u and the vertical component w of the
local fluid velocity are given by the following equations (with 6, x, and ¢ as defined in Figure II-1-1):

s 0 (1I-1-22)

u =

H gT' cosh[2n(z+d)/L] o
2 L cosh(2nd/L)

W= H gTsinh[2n(z + d)/L]

sin 0 (II-1-23)
2 L cosh(2nd/L)

(b) These equations express the local fluid velocity components any distance (z + d) above the bottom.
The velocities are periodic in both x and 7. For a given value of the phase angle 6 = (2zx/L -2xnt/T), the
hyperbolic functions cosh and sinh, as functions of z result in an approximate exponential decay of the
magnitude of velocity components with increasing distance below the free surface. The maximum positive
horizontal velocity occurs when 6 = 0, 2z, etc., while the maximum horizontal velocity in the negative
direction occurs when € =, 37, etc. On the other hand, the maximum positive vertical velocity occurs when
0 =m/2, 5n/2, etc., and the maximum vertical velocity in the negative direction occurs when 6 = 3n/2, 7m/2,
etc. Fluid particle velocities under a wave train are shown in Figure 11-1-2.

(c) The local fluid particle accelerations are obtained from Equations II-1-22 and II-1-23 by
differentiating each equation with respect to #. Thus,

_ gnH cosh[2n(z + d)/L] sin ou

o, g = M (11-1-24)
L cosh(2nd/L) ot

o - _gnH sinh[2n(z+d)/L] cos O = aw (11-1-25)
L cosh(2nd/L) ot

(d) Positive and negative values of the horizontal and vertical fluid accelerations for various values of
@ are shown in Figure I1-1-2.

(e) FigureII-1-2, a sketch of the local fluid motion, indicates that the fluid under the crest moves in the
direction of wave propagation and returns during passage of the trough. Linear theory does not predict any
net mass transport; hence, the sketch shows only an oscillatory fluid motion. Figure II-1-3 depicts profiles
of the surface elevation, particle velocities, and accelerations by the linear wave theory. The following
problem illustrates the computations required to determine local fluid velocities and accelerations resulting
from wave motions.
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Direction of Wave Propagation
> ) i I ) ) \_/j_\
0 /2 0 3n/2 27
Velocity Q
u=+; w=0 u=0; w=+ u=—; w=0 u=0; w=— u=+; w=0
Acceleration @ @
a,=0; o,=— o,=+; 0,=0 o,=0; a,=+ oa,=—; & =0 o,=0; a,=—
3] 0 /2 T 3n/2 2m
Figure 11-1-2. Local fluid velocities and accelerations

(6) Water particle displacements.

(a) Another important aspect of linear wave theory deals with the displacement of individual water
particles within the wave. Water particles generally move in elliptical paths in shallow or transitional depth
water and in circular paths in deep water (Figure 11-1-4). If the mean particle position is considered to be at
the center of the ellipse or circle, then vertical particle displacement with respect to the mean position cannot
exceed one-half the wave height. Thus, since the wave height is assumed to be small, the displacement of
any fluid particle from its mean position must be small. Integration of Equations II-1-22 and II-1-23 gives
the horizontal and vertical particle displacements from the mean position, respectively (Figure 11-1-4).

(b) Fluid particle displacements are

) cosh( 2n(Z+d))
g - Mg L ) gno (I1-1-26)
4nl cosh 2nd
L
) sinh(M)
¢ =+ HeT L cos O (I1-1-27)

47l ( 2nd)
cosh| —
L

Water Wave Mechanics 11-1-13



EM 1110-2-1100 (Part Il)
30 Apr 02

0 n/2 ® 37/2 27

Figure 11-1-3. Profiles of particle velocity and acceleration
by Airy theory in relation to the surface elevation

where ¢ is the horizontal displacement of the water particle from its mean position and { is the vertical
displacement from its mean position (Figure 1I-1-4). The above equations can be simplified by using the
relationship

2
2r)° 278 onh 2™ (I1-1-28)
T L L
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EXAMPLE PROBLEM II-1-2

FIND:
The local horizontal and vertical velocities # and w, and accelerations o, and a, at an elevation z = -5 m (or
z=-16.4 ft) below the SWL when 0 = 2nx/L - 2nt/T = /3 (or 60°).

GIVEN:
A wave with a period 7= 8 sec, in a water depth d = 15 m (49 ft), and a height # = 5.5 m (18.0 ft).

SOLUTION:
Calculate

L, = 1.56T2 = 1.56(8)* = 99.8 m (327 fi)

SR I 0.1503
99.8

4
LO

By trial-and-error solution or using Figure II-1-5 for d/L, = 0.1503, we find

4 01835
L

coshz%d = 1.742

15

L =
0.1835

- 81.7 m (268 fi)

Evaluation of the constant terms in Equations 1I-1-22 to II-1-25 gives

HeT 1 _550980® 1
2L cosh(2nd/L) 2 (817) 1742

Hgn 1 _5.5(9.8)(3.1416) 1
L cosh(2nd/L) 81.7 1.742

= 1.190

Substitution into Equation I1-1-22 gives

u = 1.515 cosh

2815 = 3 1c0s 60°]
7

= 1.515 [cosh(0.7691)] (0.500)

Example Problem I1-1-2 (Continued)
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Example Problem II-1-2 (Concluded)

From the above known information, we find

and values of hyperbolic functions become

cosh(0.7691) = 1.3106

sinh(0.7691) = 0.8472

Therefore, fluid particle velocities are
u = 1.515(1.1306)(0.500) = 0.99 m/s (3.26 fils)
w = 1.515(0.8472)(0.866) = 1.11 m/s (3.65 f¥/s)

and fluid particle accelerations are

a, = 1.190(1.3106)(0.866) = 1.35 m/s> (4.43 fils?)

o, = -1.190(0.8472)(0.500) =-0.50 m/s* (1.65 fils?)

(c) Thus,
Cosh(m)
£ - - L/ Gno (11-1-29)
2nd
sinh| =——
%)
smh( 2n(z+d))
- H cos 0 (II-1-30)
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Figure lI-1-4. Water particle displacements from mean position for shallow-water and deepwater waves

(d) Writing Equations I1-1-29 and 1I-1-30 in the forms,

2
sinh ( M]
L

sin® 0 = |= (II-1-31)
a h(m)
L
d 2
sinh(zi)
cos? 0 = | & L (I1-1-32)
Smh(m)
L
and adding gives
2 2
% . C_2 - (1-1-33)
4> B

in which 4 and B are
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cosh ( M)
4-4 L (I1-1-34)
2 . ( 2nd]
sinh| =——
L
sinh(M)
p-14 L (I1-1-35)
. ( 2nd)
sinh| —
L

(e) Equation II-1-33 is the equation of an ellipse with a major- (horizontal) semi-axis equal to 4 and a
minor (vertical) semi-axis equal to B. The lengths of 4 and B are measures of the horizontal and vertical
displacements of the water particles (see Figure 1I-1-4). Thus, the water particles are predicted to move in
closed orbits by linear wave theory; i.e., a fluid particle returns to its initial position after each wave cycle.
Comparing laboratory measurements of particle orbits with this theory shows that particle orbits are not
completely closed. This difference between linear theory and observations is due to the mass transport
phenomenon, which is discussed later in this chapter. It shows that linear theory is inadequate to explain
wave motion completely.

(f) Examination of Equations II-1-34 and II-1-35 shows that for deepwater conditions, 4 and B are equal
and particle paths are circular (Figure II-1-4). These equations become

2nz

A=B-= g e( L) for % > % (i.e., deepwater limit) (11-1-36)

(g) For shallow-water conditions (d/L < 1/25), the equations become

A =

H
= 11-1-37
5 ( )

L
2nd

and

p=H{1.:z2 (11-1-38)
2 d
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EXAMPLE PROBLEM II-1-3

FIND:
(a) The maximum horizontal and vertical displacement of a water particle from its mean position when
z=0andz=-d.

(b) The maximum water particle displacement at an elevation z = -7.5 m (-24.6 ft) when the wave is in
infinitely deep water.

(c) For the deepwater conditions of (b) above, show that the particle displacements are small relative to
the wave height when z=-L, /2.

GIVEN:
A wave in a depth d = 12 m (39.4 ft), height H =3 m (9.8 ft), and a period 7= 10 sec. The corresponding
deepwater wave height is H, = 3.13 m (10.27 ft).

SOLUTION:
(a)
L, = 1.56T* = 1.56(10)* = 156 m (512 fi)

- 12 0.0769
156

d
L,
From hand calculators, we find

2nd

sinh( —) = 0.8306
L

2’“’) = 0.6389

tanh| ——
L
When z = 0, Equation I1-1-34 reduces to
4 = g 1
tanh 2nd
L

and Equation II-1-35 reduces to

a
2

= 2.35 m (7.70 ff)

Example Problem II-1-3 (Continued)
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Example Problem II-1-3 (Concluded)

When z = -d,

A = f -3 181 m (592 i)

2(0.8306
2 sinh( %) ( )

(b) With H, =3.13 m and z = -7.5 m (-24.6 ft), evaluate the exponent of e for use in Equation II-1-36,
noting that L = L,

2z _ 2n(-7.5) _
L 156

-0.302

thus,
e 9302 = 0.739

Therefore,

2nz

A :B:ﬂe(T) 3. 13

: 2:22(0.739)=1.16 m (3.79 fi)

The maximum displacement or diameter of the orbit circle would be 2(1.16) = 2.32 m (7.61 ft) when
z=-7.5m.

(c) At a depth corresponding to the half wavelength from the MWL, we have

L _
_70 ~2156 _ 980 m (2559 1)
2nz _ 2n(-78) _
L 156

-3.142

Therefore

e 1% =0.043

= 313 0.043) - 0.067 m (0.221 i)

2

Thus the maximum dlsplacement of the particle is 0.067 m, which is small when compared with the deepwater
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(h) Thus, in deep water, the water particle orbits are circular as indicated by Equation I1-1-36 (see Fig-
ure II-1-4). Equations II-1-37 and I1-1-38 show that in transitional and shallow water, the orbits are elliptical.
The more shallow the water, the flatter the ellipse. The amplitude of the water particle displacement
decreases exponentially with depth and in deepwater regions becomes small relative to the wave height at a
depth equal to one-half the wavelength below the free surface; i.e., when z = L/2.

(1) Water particle displacements and orbits based on linear theory are illustrated in Figure II-1-4. For
shallow regions, horizontal particle displacement near the bottom can be large. In fact, this is apparent in
offshore regions seaward of the breaker zone where wave action and turbulence lift bottom sediments into
suspension. The vertical displacement of water particles varies from a minimum of zero at the bottom to a
maximum equal to one-half the wave height at the surface.

(7) Subsurface pressure.

(a) Subsurface pressure under a wave is the sum of two contributing components, dynamic and static
pressures, and is given by

pgH cosh

p'=

2n(z +d)}

cos O - pgz + p, (11-1-39)

2 cosh( @]
L

where p “is the total or absolute pressure, p, is the atmospheric pressure, and p is the mass density of water
(for salt water, p = 1,025 kg/m* or 2.0 slugs/ft’, for fresh water, p = 1,000 kg/m’ or 1.94 slugs/ft’). The first
term of Equation II-1-39 represents a dynamic component due to acceleration, while the second term is the
static component of pressure. For convenience, the pressure is usually taken as the gauge pressure defined

as
pgH cosh[@}
p=p'-p,= cos 0 - pgz (I1-1-40)
2cosh( 2id)
L
(b) Equation II-1-40 can be written as
cosh M}
P = pgN - pgz (II-1-41)
( 27td)
cosh| ——
L
since
nzﬁcos 2nx  2mt) _ H cos 0 (II-1-42)
2 L T 2
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(¢) The ratio

cosh M“

K - L (11-1-43)

cosh[ ﬁ)
L

is termed the pressure response factor. Hence, Equation II-1-41 can be written as
p = pgnK; - 2) (II-1-44)
(d) The pressure response factor K for the pressure at the bottom when z = -d,

K -K=-—1__ (11-1-45)

cosh( %)
L

is presented as function of d/L, in the tables (SPM 1984); see also Figure II-1-5. This figure is a convenient
graphic means to determine intermediate and shallow-water values of the bottom pressure response factor K,
the ratio C/C, (=L/L, = k, /k ), and a number of other variables commonly occurring in water wave
calculations.

(e) Itis often necessary to determine the height of surface waves based on subsurface measurements of
pressure. For this purpose, it is convenient to rewrite Equation 11-1-44 as

N - N + pgz) (11-1-46)
pgk,

where z is the depth below the SWL of the pressure gauge, and N a correction factor equal to unity if the
linear theory applies.

(f) Chakrabarti (1987) presents measurements that correlate measured dynamic pressure in the water
column (s in his notation is the elevation above the seabed) with linear wave theory. These laboratory
measurements include a number of water depths, wave periods, and wave heights. The best agreement
between the theory and these measurements occurs in deep water. Shallow-water pressure measurements for
steep water waves deviate significantly from the linear wave theory predictions. The example problem
hereafter illustrates the use of pertinent equations for finding wave heights from pressure measurements based
on linear theory.

(8) Group velocity.

(a) Itis desirable to know how fast wave energy is moving. One way to determine this is to look at the
speed of wave groups that represents propagation of wave energy in space and time. The speed a group of
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Figure 1I-1-5. Variation of wave parameters with d/L, (Dean and Dalrymple 1991)

waves or a wave train travels is generally not identical to the speed with which individual waves within the
group travel. The group speed is termed the group velocity C,; the individual wave speed is the phase velocity
or wave celerity given by Equations II-1-8 or II-1-9. For waves propagating in deep or transitional water with
gravity as the primary restoring force, the group velocity will be less than the phase velocity. For those
waves, propagated primarily under the influence of surface tension (i.e., capillary waves), the group velocity
may exceed the velocity of an individual wave.

(b) The concept of group velocity can be described by considering the interaction of two sinusoidal wave
trains moving in the same direction with slightly different wavelengths and periods. The equation of the
water surface is given by

H 2mx 2mt H 2mx 2nt
= + = —~—cos| =— - =/ | + —cos|] =— - = 11-1-47
T =5 [ 1 T, ] 2 ( R T J ( )

2

where #, and 7, are the two components. They may be summed since superposition of solutions is
permissible when the linear wave theory is used. For simplicity, the heights of both wave components have
been assumed equal. Since the wavelengths of the two component waves, L, and L,, have been assumed
slightly different for some values of x at a given time, the two components will be in phase and the wave
height observed will be 2H; for some other values of x, the two waves will be completely out of phase and
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EXAMPLE PROBLEM II-1-4

FIND:
The height of the wave H assuming that linear theory applies and the average frequency corresponds to the
average wave amplitude.

GIVEN:

An average maximum pressure p = 124 kilonewtons per square meter is measured by a subsurface
pressure gauge located in salt water 0.6 meter (1.97 ft) above the bed in depth d = 12 m (39 ft). The average
frequency /= 0.06666 cycles per second (Hertz).

SOLUTION:
1

x5
(0.0666)

T =

1.
A
L, = 1.56T% = 1.56(15)* = 351 m (1152 fi)

4 12 90342
351

L,

From Figure II-1-5, entering with d/L,,

12

L=-—°_ -1568 m (515 ft
(0.07651) (157

cosh (%dJ = 1.1178

Therefore, from Equation II-1-43

2n(-11.4+12)
156.8

cosh cosh

2n(z +d)
L

K = = } = (0.8949
2nd 1.1178
cosh| =—=
L

Since 1 = a = H/2 when the pressure is maximum (under the wave crest), and N = 1.0 since linear theory is
assumed valid,

H _ Np +pgz) _ 1.0 [124 + (10.06) (-11.4)]

- 1.04 m (3.44 fi)
2 pgK. (10.06) (0.8949)

Therefore,

H = 2(1.04) = 2.08 m (6.3 fi)

Note that the value of K in Figure II-1-5 or SPM (1984) could not be used since the pressure was not measured
at the bottom.
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the resultant wave height will be zero. The surface profile made up of the sum of the two sinusoidal waves
is given by Equation II-1-47 and is shown in Figure II-1-6. The waves shown in Figure 1I-1-6 appear to be
traveling in groups described by the equation of the envelope curves
L, - L - T,
=+ Hcos|g| —|x -] ———|¢ (IT-1-48)
Ll L2 Tl T2
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Figure lI-1-6. Characteristics of a wave group formed by the addition of sinusoids with different periods

(c) It is the speed of these groups (i.e., the velocity of propagation of the envelope curves) defined in
Equation II-1-48 that represents the group velocity. The limiting speed of the wave groups as they become
large (i.e., as the wavelength L, approaches L, and consequently the wave period T, approaches T5) is the
group velocity and can be shown to be equal to

And
c - YL, L |_,c (I1-1-49)
£ 27T . (4nd)
sinh| —=
L
where
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et —L (I1-1-50)
2 ( 4nd)
sinh
L

(d) In deep water, the term (4nd/L)/sinh(4nd/L) is approximately zero and n = 1/2, giving
== — = = C (deep water) (II-1-51)

or the group velocity is one-half the phase velocity.

(¢) In shallow water, sinh(4nd/L = 4nd/L) and

C % C = \/_d (shallow water) (II-1-52)

8

hence, the group and phase velocities are equal. Thus, in shallow water, because wave celerity is determined
by the depth, all component waves in a wave train will travel at the same speed precluding the alternate
reinforcing and canceling of components. In deep and transitional water, wave celerity depends on
wavelength; hence, slightly longer waves travel slightly faster and produce the small phase differences
resulting in wave groups. These waves are said to be dispersive or propagating in a dispersive medium; i.e.,
in a medium where their celerity is dependent on wavelength.

(f) The variation of the ratios of group and phase velocities to the deepwater phase velocity C,/C, and
C/C,, respectively are given as a function of the depth relative to the deep water wavelength d/L, in
Figure II-1-7. The two curves merge together for small values of depth and C, reaches a maximum before
tending asymptotically toward C/2.

(g) Outside of shallow water, the phase velocity of gravity waves is greater than the group velocity. An
observer that follows a group of waves at group velocity will see waves that originate at the rear of the group
move forward through the group traveling at the phase velocity and disappear at the front of the wave group.

(h) Group velocity is important because it is with this velocity that wave energy is propagated. Although
mathematically the group velocity can be shown rigorously from the interference of two or more waves
(Lamb 1945), the physical significance is not as obvious as it is in the method based on the consideration of
wave energy. Therefore an additional explanation of group velocity is provided on wave energy and energy
transmission.

(9) Wave energy and power.
(a) The total energy of a wave system is the sum of its kinetic energy and its potential energy. The

kinetic energy is that part of the total energy due to water particle velocities associated with wave motion.
The kinetic energy per unit length of wave crest for a wave defined with the linear theory can be found from

f o f W g (11-1-53)
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Figure lI-1-7. Variation of the ratios of group and phase velocities to deepwater phase speed using linear
theory (Sarpkaya and Isaacson 1981)

which, upon integration, gives

E, - % pg H L (11-1-54)

(b) Potential energy is that part of the energy resulting from part of the fluid mass being above the
trough: the wave crest. The potential energy per unit length of wave crest for a linear wave is given by

_ 2 2
E - [Trg [_(n r A g (11-1-55)

p 2 2

which, upon integration, gives
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— 1 )
E = — H" L II-1-56
» e P8 ( )

(c) According to the Airy theory, if the potential energy is determined relative to SWL, and all waves
are propagated in the same direction, potential and kinetic energy components are equal, and the total wave
energy in one wavelength per unit crest width is given by

pgH’L  pgH’L _ pgH’L

II-1-57
16 16 8 ( )

E-E +E, -

where subscripts k and p refer to kinetic and potential energies. Total average wave energy per unit surface
area, termed the specific energy or energy density, is given by

£ - % _ pgH (I1-1-58)

(d) Wave energy flux is the rate at which energy is transmitted in the direction of wave propagation across
a vertical plan perpendicular to the direction of wave advance and extending down the entire depth.
Assuming linear theory holds, the average energy flux per unit wave crest width transmitted across a vertical
plane perpendicular to the direction of wave advance is

5 1 pt+r n
P =— u dz dt II-1-59
T/ f-d P ( )

which, upon integration, gives
P = EnC = EC, (11-1-60)
where P is frequently called wave power, and the variable n has been defined earlier in Equation II-1-50.
(e) If avertical plane is taken other than perpendicular to the direction of wave advance, P=E C, sin
0, where 0 is the angle between the plane across which the energy is being transmitted and the direction of

wave advance.

(f) For deep and shallow water, Equation 1I-1-60 becomes

150 = % EO C, (deep water) (1I-1-61)
P = EC, = EC (shallow water) (11-1-62)

(g) Anenergy balance for a region through which waves are passing will reveal that, for steady state, the
amount of energy entering the region will equal the amount leaving the region provided no energy is added
or removed. Therefore, when the waves are moving so that their crests are parallel to the bottom contours

o 1y Cy = EnC (11-1-63)
or since
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1
m = (11-1-64)
% E, C, = EnC (11-1-65)

(h) When the wave crests are not parallel to the bottom contours, some parts of the wave will be traveling
at different speeds and the wave will be refracted; in this case Equation II-1-65 does not apply (see Parts 11-3
and II-4). The rate of energy transmission is important for coastal design, and it requires knowledge of C,
to determine how fast waves move toward shore. The mean rate of energy transmission associated with
waves propagating into an area of calm water provides a different physical description of the concept of group
velocity.

(i) Equation II-1-65 establishes a relationship between the ratio of the wave height at some arbitrary
depth and the deepwater wave height. This ratio, known as the shoaling coefficient (see Part 11-3 for detail
derivation), is dependent on the wave steepness. The variation of shoaling coefficient with wave steepness
as a function of relative water depth d/L, is shown in Figure II-1-8. Wave shoaling and other related
nearshore processes are described in detail in Parts II-3 and 11-4.

(10) Summary of linear wave theory.

(a) Equations describing water surface profile particle velocities, particle accelerations, and particle
displacements for linear (Airy) theory are summarized in Figure II-1-9. The Corps of Engineers’
microcomputer package of computer programs (ACES; Leenknecht et al. 1992) include several software
applications for calculating the linear wave theory and associated parameters. Detailed descriptions of the
ACES and CMS software to the linear wave theory may be found in the ACES and CMS documentation.

(b) Other wave phenomena can be explained using linear wave theory. For example, observed decreases
and increases in the mean water level, termed wave setdown and wave setup, are in essence nonlinear
quantities since they are proportional to wave height squared. These nonlinear quantities may be explained
using the concept of radiation stresses obtained from linear theory. Maximum wave setdown occurs
just seaward of the breaker line. Wave setup occurs between the breaker line and the shoreline and can
increase the mean water level significantly. Wave setdown and setup and their estimation are discussed in
Part 11-4.

(c) Radiation stresses are the forces per unit area that arise because of the excess momentum flux due
to the presence of waves. In simple terms, there is more momentum flow in the direction of wave advance
because the velocity U is in the direction of wave propagation under the wave crest when the instantaneous
water surface is high (wave crest) and in the opposite direction when the water surface is low (wave trough).
Also, the pressure stress acting under the wave crest is greater than the pressure stress under the wave trough
leading to a net stress over a wave period. Radiation stresses arise because of the finite amplitude (height)
of the waves. Interestingly, small-amplitude (linear) wave theory can be used to reasonably approximate
radiation stresses and explain effects such as wave set down, wave setup, and the generation of longshore
currents.
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Figure 11-1-8. Variation of shoaling coefficient with wave steepness (Sakai and Battjes 1980)
d. Nonlinear wave theories.
(1) Introduction.

(a) Linear waves as well as finite-amplitude waves may be described by specifying two dimensionless
parameters, the wave steepness H/L and the relative water depth d/L. The relative water depth has been
discussed extensively earlier in this chapter with regard to linear waves. The Relative depth determines
whether waves are dispersive or nondispersive and whether the celerity, length, and height are influenced by
water depth. Wave steepness is a measure of how large a wave is relative to its height and whether the linear
wave assumption is valid. Large values of the wave steepness suggest that the small-amplitude
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Figure 11-1-9. Summary of linear (Airy) wave theory - wave characteristics

assumption may be questionable. A third dimensionless parameter, which may be used to replace either the
wave steepness or relative water depth, may be defined as the ratio of wave steepness to relative water depth.

Thus,
HL _H
d/L d
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which is termed the relative wave height. Like the wave steepness, large values of the relative wave height

indicate that the small-amplitude assumption may not be valid. A fourth dimensionless parameter often used
to assess the relevance of various wave theories is termed the Ursell number. The Ursell number is given by

2 2
U, (A] H_ LM (11-1-67)

d) d d?

(b) The value of the Ursell number is often used to select a wave theory to describe a wave with given
L and H (or T and H) in a given water depth d. High values of U, indicate large, finite-amplitude, long waves
in shallow water that may necessitate the use of nonlinear wave theory, to be discussed next.

(c) The linear or small-amplitude wave theory described in the preceding sections provides a useful first
approximation to the wave motion. Ocean waves are generally not small in amplitude. In fact, from an
engineering point of view it is usually the large waves that are of interest since they result in the largest forces
and greatest sediment movement. In order to approach the complete solution of ocean waves more closely,
a perturbation solution using successive approximations may be developed to improve the linear theory
solution of the hydrodynamic equations for gravity waves. Each order wave theory in the perturbation
expansion serves as a correction and the net result is often a better agreement between theoretical and
observed waves. The extended theories can also describe phenomena such as mass transport where there is
a small net forward movement of the water during the passage of a wave. These higher-order or extended
solutions for gravity waves are often called nonlinear wave theories.

(d) Development of the nonlinear wave theories has evolved for a better description of surface gravity
waves. These include cnoidal, solitary, and Stokes theories. However, the development of a Fourier-series
approximation by Fenton in recent years has superseded the previous historical developments. Since earlier
theories are still frequently referenced, these will first be summarized in this section, but Fenton's theory is
recommended for regular waves in all coastal applications.

(2) Stokes finite-amplitude wave theory.

(a) Since the pioneering work of Stokes (1847, 1880) most extension studies (De 1955; Bretschneider
1960; Skjelbreia and Hendrickson 1961; Laitone 1960, 1962, 1965; Chappelear 1962; Fenton 1985) in wave
perturbation theory have assumed the wave slope ka is small where k is the wave number and a the amplitude
of the wave. The perturbation solution, developed as a power series in terms of ¢ = ka, is expected to
converge as more and more terms are considered in the expansion. Convergence does not occur for steep
waves unless a different perturbation parameter from that of Stokes is chosen (Schwartz 1974; Cokelet 1977;
Williams 1981, 1985).

(b) The fifth-order Stokes finite-amplitude wave theory is widely used in practical applications both in
deep- and shallow-water wave studies. A formulation of Stokes fifth-order theory with good convergence
properties has recently been provided (Fenton 1985). Fenton's fifth-order Stokes theory is computationally
efficient, and includes closed-form asymptotic expressions for both deep- and shallow-water limits.
Kinematics and pressure predictions obtained from this theory compare with laboratory and field
measurements better than other nonlinear theories.

(c) In general, the perturbation expansion for velocity potential @ may be written as

O =D, + D, + ... (II-1-68)
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in which & = ka is the perturbation expansion parameter. Each term in the series is smaller than the preceding
term by a factor of order ka. In this expansion, @, is the first-order theory (linear theory), @, is the second-
order theory, and so on.

(d) Substituting Equation II-1-68 and similar expressions for other wave variables (i.e., surface elevation
n, velocities u and w, pressure p, etc.) into the appropriate governing equations and boundary conditions
describing the wave motion yields a series of higher-order solutions for ocean waves. Equating the
coefficients of equal powers of ka gives recurrence relations for each order solution. A characteristic of the
perturbation expansion is that each order theory is expressed in terms of the preceding lower order theories
(Phillips 1977; Dean and Dalrymple 1991; Mei 1991). The first-order Stokes theory is the linear (Airy)
theory.

(e) The Stokes expansion method is formally valid under the conditions that H/d « (kd)’ for kd < I and
H/L « I (Peregrine 1972). In terms of the Ursell number Uy these requirements can be met only for U, <79.
This condition restricts the wave heights in shallow water and the Stokes theory is not generally applicable
to shallow water. For example, the maximum wave height in shallow water allowed by the second-order
Stokes theory is about one-half of the water depth (Fenton 1985). The mathematics of higher-order Stokes
theories is cumbersome and is not presented here. See Ippen (1966) for a detailed derivation of the Stokes
second-order theory.

(f) Inthe higher-order Stokes solutions, superharmonic components (i.e., higher frequency components
at two, three, four, etc. times the fundamental frequency) arise. These are superposed on the fundamental
component predicted by linear theory. Hence, wave crests are steeper and troughs are flatter than the
sinusoidal profile (Figure II-1-10). The fifth-order Stokes expansion shows a secondary crest in the wave
trough for high-amplitude waves (Peregrine 1972; Fenton 1985). In addition, particle paths for Stokes waves
are no longer closed orbits and there is a drift or mass transport in the direction of wave propagation.

(g) The linear dispersion relation is still valid to second order, and both wavelength and celerity are
independent of wave height to this order. At third and higher orders, wave celerity and wavelength depend
on wave height, and therefore, for a given wave period, celerity and length are greater for higher waves.
Some limitations are imposed on the finite-amplitude Stokes theory in shallow water both by the water depth
and amplitude nonlinearities. For steeper waves in shallow water, higher-order terms in Stokes expansion
may increase in magnitude to become comparable or larger than the fundamental frequency component
(Fenton 1985; Chakrabarti 1987). When this occurs, the Stokes perturbation becomes invalid.

(h) Higher-order Stokes theories include aperiodic (i.e., not periodic) terms in the expressions for water
particle displacements. These terms arise from the product of time and a constant depending on the wave
period and depth, and give rise to a continuously increasing net particle displacement in the direction of wave
propagation. The distance a particle is displaced during one wave period when divided by the wave period
gives a mean drift velocity U(z), called the mass transport velocity. To second-order, the mass transport
velocity is

ﬂ)z C cosh [4n(z + d)/L] (11-1-69)

Ue) = ( ;
L 2 sinh?* (2nd/L)

indicating that there is a net transport of fluid by waves in the direction of wave propagation. If the mass
transport leads to an accumulation of mass in any region, the free surface must rise, thus generating a pressure
gradient. A current, formed in response to this pressure gradient, will reestablish the distribution of mass.
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Figure 1I-1-10. Wave profile shape of different progressive gravity waves

(1) Following Stokes, using higher-order wave theories, both theoretical and experimental studies of
mass transport have been conducted (Miche 1944; Ursell 1953; Longuet-Higgins 1953; Russell and Osorio
1958; Isaacson 1978). Results of two-dimensional wave tank experiments where a return flow existed in
these studies show that the vertical distribution of the mass transport velocity is modified so that the net
transport of water across a vertical plane is zero. For additional information on mass transport, see Dean and
Dalrymple (1991).

(3) Subsurface pressure.
(a) Higher-order Stokes theories introduce corrections to the linear wave theory, and often provide more

accurate estimates of the wave kinematics and dynamics. For example, the second-order Stokes theory gives
the pressure at any distance below the fluid surface as
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H cosh[2n(z +d)/L] c

0s0 - pgz
2 cosh(2nd/L) P&

p:

(11-1-70)

2
3 aH tanh(znd/L]( cosh[4n(z +d)/L] _i) cos 20

8 L sinh®Q2nd/L\ sinh’Q2nd/L) 3

2
1 o mH? tanhQud/L) ( cosh 4rEd) 1)
8 L sinh’(2nd/L) L

(b) The terms proportional to the wave height squared in the above equation represent corrections by the
second-order theory to the pressure from the linear wave theory. The third term is the steady component of
pressure that corresponds to time-independent terms mentioned earlier.

(c) A direct byproduct of the high-order Stokes expansion is that it provides means for comparing
different orders of resulting theories, all of which are approximations. Such comparison is useful to obtain
insight about the choice of a theory for a particular problem. Nonetheless, it should be kept in mind that
linear (or first-order) theory applies to a wave that is symmetrical about the SWL and has water particles that
move in closed orbits. On the other hand, Stokes' higher-order theories predict a wave form that is
asymmetrical about the SWL but still symmetrical about a vertical line through the crest and has water
particle orbits that are open (Figure I1I-1-10).

(4) Maximum wave steepness.

(a) A progressive gravity wave is physically limited in height by depth and wavelength. The upper limit
or breaking wave height in deep water is a function of the wavelength and, in shallow and transitional water,
is a function of both depth and wavelength.

(b) Stokes (1880) predicted theoretically that a wave would remain stable only if the water particle
velocity at the crest was less than the wave celerity or phase velocity. If the wave height were to become so
large that the water particle velocity at the crest exceeded the wave celerity, the wave would become unstable
and break. Stokes found that a wave having a crest angle less than 120 deg would break (angle between two
lines tangent to the surface profile at the wave crest). The possibility of the existence of a wave having a crest
angle equal to 120 deg is known (Lamb 1945). Michell (1893) found that in deep water the theoretical limit
for wave steepness is

H
(—0 = 0.142 =
LO max

Havelock (1918) confirmed Michell's finding.

(1I-1-71)

<2~

(c) Miche (1944) gives the limiting steepness for waves traveling in depths less than L/2 without a
change in form as

H,
H 2120 tanh [ 2] - 0.142 tanh | 2 (1I-1-72)
L) L) L L
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Laboratory measurements indicate that Equation 11-1-72 is in agreement with an envelope curve to laboratory
observations (Dean and Dalrymple 1991).

e. Other wave theories.
(1) Introduction.

(a) Extension of the Stokes theory to higher orders has become common with computers, but the
mathematics involved is still tedious. Variations of the Stokes theory have been developed in the last three
decades oriented toward computer implementation. For example, Dean (1965) used the stream function in
place of the velocity potential to develop the stream function theory. Dean (1974) did a limited comparison
of measured horizontal particle velocity in a wave tank with the tenth-order stream function theory and
several other theories. Forty cases were tabulated in dimensionless form to facilitate application of this
theory.

(b) Others (Dalrymple 1974a; Chaplin 1980; Reinecker and Fenton 1981) developed variations of the
stream function theory using different numerical methods. Their studies included currents. For near-breaking
waves, Cokelet (1977) extended the method of Schwartz (1974) for steep waves for the full range of water
depth and wave heights. Usinga 110th-order theory for waves up to breaking, Cokelet successfully computed
the wave profile, wave celerity, and various integral properties of waves, including the mean momentum,
momentum flux, kinetic and potential energy, and radiation stress.

(2) Nonlinear shallow-water wave theories.

(a) Stokes’ finite amplitude wave theory is applicable when the depth to wavelength ratio d/L is greater
than about 1/8 or kd > 0.78 or U.<79. For longer waves a different theory must be used (Peregrine 1976).
As waves move into shallow water, portions of the wave travel faster because of amplitude dispersion or
waves travel faster because they are in deeper water. Waves also feel the effects of frequency dispersion less
in shallow water, e.g., their speed is less and less influenced by water depth.

(b) For the mathematical representation of waves in shallow water, a different perturbation parameter
should be used to account for the combined influence of amplitude and frequency dispersion (Whitham 1974;
Miles 1981; Mei 1991). This can be achieved by constructing two perturbation parameters whose ratio is
equivalent to the Ursell parameters (Peregrine 1972). The set of equations obtained in this manner are termed
the nonlinear shallow-water wave equations. Some common wave theories based on these equations are
briefly described in the following sections.

(3) Korteweg and de Vries and Boussinesq wave theories.

(a) Various shallow-water equations can be derived by assuming the pressure to be hydrostatic so that
vertical water particle accelerations are small and imposing a horizontal velocity on the flow to make it steady
with respect to the moving reference frame. The horizontal velocity might be the velocity at the SWL, at the
bottom, or the velocity averaged over the depth. If equations are written in terms of depth-averaged velocity
u they become:

o, 9
ot ox
_ _ s
o | gou o 1 i
ot ox ox 3 9x20t

(d+mu =0
(11-1-73)
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which are termed the Boussinesq equations (Whitham 1967; Peregrine 1972; Mei 1991). Originally,
Boussinesq used the horizontal velocity at the bottom. Eliminating u yields (Miles 1979, 1980, 1981)

2 2 2 2 2
IM g9 _ g 93 120m (11-1-74)
ot? ox? ax:\2d 3 ox?

A periodic solution to Equation II-1-74 is of the form

_ itkx - ot) _
n=ae = a cos 0
u = UO e i(kx - of) _ Uo cos 0 (H-1—75)
which has a dispersion relation and an approximation to it given by
_ Cs 1 2
C=——"——=C |l - g(kd) + o (1I-1-76)

1 1/2
3
The term 1/3 (kd)’ in Equation II-1-76 represents the dispersion of wave motion.

(c) The most elementary solution of the Boussinesq equation is the solitary wave (Russell 1844; Fenton
1972; Miles 1980). A solitary wave is a wave with only crest and a surface profile lying entirely above the
SWL. Fenton's solution gives the maximum solitary wave height, H,,,., = 0.85 d and maximum propagation
speed C°,,, = 1.7 gd. Earlier research studies using the solitary waves obtained H,,, = 0.78 d and C’,,, =
1.56 gd. The maximum solitary-amplitude wave is frequently used to calculate the height of breaking waves
in shallow water. However, subsequent research has shown that the highest solitary wave is not necessarily

the most energetic (Longuet-Higgins and Fenton 1974).
(4) Cnoidal wave theory.

(a) Korteweg and de Vries (1895) developed a wave theory termed the cnoidal theory. The cnoidal
theory is applicable to finite-amplitude shallow-water waves and includes both nonlinearity and dispersion
effects. Cnoidal theory is based on the Boussinesq, but is restricted to waves progressing in only one
direction. The theory is defined in terms of the Jacobian elliptic function, cn, hence the name cnoidal.
Cnoidal waves are periodic with sharp crests separated by wide flat troughs (Figure I1-1-10).

(b) The approximate range of validity of the cnoidal theory is d/L < 1/8 when the Ursell number U, >
20. As wavelength becomes long and approaches infinity, cnoidal wave theory reduces to the solitary wave
theory, which is described in the next section. Also, as the ratio of wave height to water depth becomes small
(infinitesimal wave height), the wave profile approaches the sinusoidal profile predicted by the linear theory.

(c) Cnoidal waves have been studied extensively by many investigators (Keulegan and Patterson 1940;
Keller 1948; Laitone 1962) who developed first- through third-order approximations to the cnoidal wave
theory. Wiegel (1960) summarized the principal results in a more usable form by presenting such wave
characteristics as length, celerity, and period in tabular and graphical form to facilitate application of cnoidal
theory.

(d) Wiegel (1964) further simplified the earlier works for engineering applications. Recent additional
improvements to the theory have been made (Miles 1981; Fenton 1972, 1979). Using a Rayleigh-Boussinesq
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series, Fenton (1979) developed a generalized recursion relationship for the KdV solution of any order.
Fenton’s fifth- and ninth-order approximations are frequently used in practice. A summary of formulas of
the cnoidal wave theory are provided below. See Fenton (1979), Fenton and McKee 1990), and Miles (1981)
for a more comprehensive theoretical presentation.

(e) Long, finite-amplitude waves of permanent form propagating in shallow water may be described by
cnoidal wave theory. The existence in shallow water of such long waves of permanent form may have first
been recognized by Boussinesq (1871). However, the theory was originally developed by Korteweg and de
Vries (1895).

(f) Because local particle velocities, local particle accelerations, wave energy, and wave power for
cnoidal waves are difficult to describe such descriptions are not included here, but can be obtained in
graphical form from Wiegel (1960, 1964). Wave characteristics are described in parametric form in terms
of the modules & of the elliptic integrals. While k itself has no physical significance, it is used to express the
relationships between various wave parameters. Tabular presentations of the elliptic integrals and other
important functions can be obtained from the above references. The ordinate of the water surface y, measured
above the bottom is given by

y, =y, + Hen?

2K(k)( —_;J , k} (11-1-77)

x
L
where

y, = distance from the bottom to the wave trough
H = trough to crest wave height
cn = elliptic cosine function

K(k) = complete elliptic integral of the first kind
k = modulus of the elliptic integrals

(g) The argument of cn’ is frequently denoted simply by ( ); thus, Equation II-1-77 above can be written
as

y, =y, + Hen*( ) (11-1-78)

(h) The elliptic cosine is a periodic function where cn® [2K(k) ((x/L) - (t/T)] has a maximum amplitude
equal to unity. The modulus k is defined over the range 0 and 1. When & = 0, the wave profile becomes a
sinusoid, as in the linear theory; when & = 1, the wave profile becomes that of a solitary wave.

(1) The distance from the bottom to the wave trough y,, as used in Equations II-1-77 and II-1-78, is given
by

Vi H _
d d d 32

where y. is the distance from the bottom to the crest, and E(k) the complete elliptic integral of the second kind.
Wavelength is given by

Yo (H _ 164> g - BR] < 1 - % (I1-1-79)
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16d°3
L = k K(k 11-1-80
3 (k) ( )

and wave period by

T\IE _ |1 a k K(b) (11-1-81)
d N3 yr1+i(l_@)

v k2 K

Note that cnoidal waves are periodic and of permanent form; thus L = CT (see Figure 1I-1-10).

(j) Pressure under a cnoidal wave at any elevation y above the bottom depends on the local fluid
velocity, and is therefore complex. However, it may be approximated in a hydrostatic form as

p=pg - (11-1-82)
i.e., the pressure distribution may be assumed to vary linearly from pgy, at the bed to zero at the surface.

(k) Wave profiles obtained from different wave theories are sketched in Figure I1-1-10 for comparison.
The linear profile is symmetric about the SWL. The Stokes wave has higher more peaked crests and shorter,
flatter troughs. The cnoidal wave crests are higher above the SWL than the troughs are below the SWL.
Cnoidal troughs are longer and flatter and crests are sharper and steeper than Stokes waves. The solitary
wave, a form of the cnoidal wave described in the next section, has all of its profile above the SWL.

(I) FiguresII-1-11 and II-1-12 show the dimensionless cnoidal wave surface profiles for various values
of the square of the modulus of the elliptic integrals &, while Figures 11-1-13 to II-1-16 present dimensionless
plots of the parameters which characterize cnoidal waves. The ordinates of Figures I1-1-13 and II-1-14 should
be read with care, since values of & are extremely close to 1.0 (k> =1 - 10" =1-0.1 =0.90). It is the
exponent a of k> = 1 - 10 that varies along the vertical axis of Figures 1I-1-13 and II-1-14.

(m) Ideally, shoaling computations might be performed using a higher-order cnoidal wave theory since
this theory is able to describe wave motion in relatively shallow water. Simple, completely satisfactory
procedures for applying cnoidal wave theory are not available. Although linear wave theory is often used,
cnoidal theory may be applied for practical situations using Figures such as II-1-11 to II-1-16. The following
problem illustrates the use of these figures.

(n) There are two limits to the cnoidal wave theory. The first occurs when the period of the function
cn is infinite when £ = /. This corresponds to a solitary wave. As the wavelength becomes infinite, the
cnoidal theory approaches the solitary wave theory. The second limit occurs for £ = 0 where the cnoidal
wave approaches the sinusoidal wave. This happens when the wave height is small compared to water depth
and the cnoidal theory reduces to the linear theory.
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Figure 1I-1-12. Normalized surface profile of the cnoidal wave for higher values of k? and X/L (Wiegel 1960)
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Figure II-1-13. k? versus L?H/d?, and k® versus Tvg/d and H/d (Wiegel 1960)

(5) Solitary wave theory.

(a) Waves considered in the previous sections were oscillatory or nearly oscillatory waves. The water
particles move backward and forward with the passage of each wave, and a distinct wave crest and wave
trough are evident. A solitary wave is neither oscillatory nor does it exhibit a trough. In the pure sense, the
solitary wave form lies entirely above the still-water level. The solitary wave is a wave of translation because
the water particles are displaced a distance in the direction of wave propagation as the wave passes.

(b) The solitary wave was discovered by Russell (1844). Boussinesq (1871), Rayleigh (1876), Keller
(1948), and Munk (1949) performed pioneering theoretical studies of solitary waves. More recent analyses

Water Wave Mechanics 11-1-41



EM 1110-2-1100 (Part Il)

30 Apr 02
B
1.0 (50)
5
o8p—"——"-—" """ " - — f - - {40)
- e _d, N _d
H H H K(k)[1-6 SCALE]
o Ay {30
o4fp-———————————— {2209
o2 A T 110
n == / . | | 1.0
0.1 1.0 10 100 1000 10000
L2H
d3
2 3
L™H _ 16,2 2 Je_d_N_d ,,_ 16d _
£ 3 K Ko(k) o =" "1 *t'= 324 {K(k) [KOO—E(K)}

Figure lI-1-14. Relationship among L?H/d® and the square of the elliptic modulus (k?), y./H, y/H, and K(k)

(Wiegel 1960)

of solitary waves were performed by Fenton (1972), Longuet-Higgins and Fenton (1974), and Byatt-Smith
and Longuet-Higgins (1976). The first systematic observations and experiments on solitary waves can
probably be attributed to Russell (1838, 1844), who first recognized the existence of a solitary wave.

(¢) Innature it is difficult to form a truly solitary wave, because at the trailing edge of the wave there
are usually small dispersive waves. However, long waves such as tsunamis and waves resulting from large
displacements of water caused by such phenomena as landslides and earthquakes sometimes behave
approximately like solitary waves. When an oscillatory wave moves into shallow water, it may often be
approximated by a solitary wave (Munk 1949). As an oscillatory wave moves into shoaling water, the wave
amplitude becomes progressively higher, the crests become shorter and more pointed, and the trough becomes

longer and flatter.

(d) Because both wavelength and period of solitary waves are infinite, only one parameter H/d is needed
to specify a wave. To lowest order, the solitary wave profile varies as sech’q (Wiegel 1964), where g =
(3H/d)"? (x-Ct)/2d and the free-surface elevation, particle velocities, and pressure may be expressed as

u
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AP geen? ¢ (11-1-85)
pgH
where Ap is the difference in pressure at a point due to the presence of the solitary wave.
(e) To second approximation (Fenton 1972), this difference is given by
v )2
Ap o3 H D (11-1-86)
pgH 4 d d

where y, = the height of the surface profile above the bottom. The wave height H required to produce 4p on
the seabed can be estimated from
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Figure 1I-1-16. Relationship between cnoidal wave velocity and L?H/d® (Wiegel 1960)
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34p (11-1-87)
pgd

(f) Since the solitary wave has horizontal particle velocities only in the direction of wave advance, there
is a net displacement of fluid in the direction of wave propagation.

(g) The solitary wave is a limiting case of the cnoidal wave. When &2 =1, K(k) = K(1) = «, and the

elliptic cosine reduces to the hyperbolic secant function and the water surface y, measured above the bottom
reduces to

yszcz’JrHsech2 éﬂ(x—Ct)
4 43

(II-1-88)
(h) The free surface is given by
n=Hseh?| |22« - (I1-1-89)
4 43
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EXAMPLE PROBLEM II-1-5
FIND:
(a) Using cnoidal wave theory, find the wavelength L and compare this length with the length determined
using Airy theory.
(b) Determine the celerity C. Compare this celerity with the celerity determined using Airy theory.
(c) Determine the distance above the bottom of the wave crest y, and wave trough y, .
(d) Determine the wave profile.
GIVEN:
A wave traveling in water depth d = 3 m (9.84 ft), with a period 7'= 15 sec, and a height H=1.0 m
(3.3 ft).

SOLUTION:

(a) Calculate

28 _ 27.11

3

From Figure II-1-13, enter H/d and T to determine the square of the modulus of the complete elliptical
integrals, k’:

k*=1-107

Entering both Figures II-1-13 and II-1-14 with the value of k% gives

2
L°H _ 599
d3

I - \J 290 d° _ \' 290 (3)°

H 1

Example Problem II-1-5 (Continued)
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Example Problem II-1-5 (Continued)

which gives L = 88.5 m (290.3 ft). The wavelength from the linear (Airy) theory is

2
L - gz_T tanh (2%1') - 80.6 m (264.5 i)
T

To check whether the wave conditions are in the range for which cnoidal wave theory is valid, calculate d/L
and the Ursell number = L*H/d’:

BN 0.0339 < % 0.K.

88.5

=290 >26  OK.
/)

Therefore, cnoidal theory is applicable.

(b) Wave celerity is given by

Thus, if it is assumed that the wave period is the same for cnoidal and Airy theories, then

C L

cnoidal - _ cnoidal 1

C L

Airy

Airy

(c) The percentage of the wave height above the SWL may be determined from Figure I1-1-11 or II-1-12.
Entering these figures with L’H/D’ = 290, the value of (v, -d)/H is found to be 0.865, or 86.5 percent.
Therefore,

y, = 0865 H + d

y. = 0.865(1) + 3 = 0.865 + 3 = 3.865 m (12.68 fi)

Example Problem II-1-5 (Continued

11-1-46 Water Wave Mechanics



EM 1110-2-1100 (Part I1)
30 Apr 02
Example Problem II-1-5 (Concluded)

Also from Figure II-1-11 or II-1-12,

y, = (0.865 ~ 1)(1) + 3 = 2.865 m (9.40 fi)

(d) The dimensionless wave profile is given in Figures II-1-11 and 1I-1-12 for & = 1 - 10”°. The results
obtained in (c) above can also be checked by using Figures II-1-11 and II-1-12. For the wave profile obtained
with &2 =1 - 107, the SWL is approximately 0.14H above the wave trough or 0.86H below the wave crest.

The results for the wave celerity determined under (b) above can now be checked with the aid of
Figure II-1-16. Calculate

- D g349
2.865

H
Vi

Entering Figure II-1-16 with

it is found that

Therefore,

C = 1.126 /(9.8)(2.865) = 5.97 m/s (19.57 fis)

The differences between this number and the 5.90 m /sec (18.38 ft/s) calculated under (b) above is the result of
small errors in reading the curves.
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where the origin of x is at the wave crest. The volume of water within the wave above the still-water level

per unit crest width is
1

V- [? d* Hf? (11-1-90)

(i) An equal amount of water per unit crest length is transported forward past a vertical plane that is
perpendicular to the direction of wave advance. Several relations have been presented to determine the
celerity of a solitary wave; these equations differ depending on the degree of approximation. Laboratory
measurements suggest that the simple expression

C = gH + d (II-1-91)
gives a reasonably accurate approximation to the celerity of solitary wave.
(G) The water particle velocities for a solitary wave (Munk 1949), are

1 + cos(My/d) cosh(Mx/d)
[cos(My/d) + cosh(Mx/D)J*

u=CN (11-1-92)

sin(My/d) sinh(Mx/d)
[cos(My/d) + cosh(Mx/D)J?

w = CN (11-1-93)

where M and N are the functions of H/d shown in Figure II-1-17, and y is measured from the bottom. The
expression for horizontal velocity u is often used to predict wave forces on marine structures situated in
shallow water. The maximum velocity u,,, occurs when x and ¢ are both equal to zero; hence,

max

N (11-1-94)

u
"1+ cos(My/d)

(h) Total energy in a solitary wave is about evenly divided between kinetic and potential energy. Total
wave energy per unit crest width is

g 3 3
E=-—"_pgH?d?

3¢3

and the pressure beneath a solitary wave depends on the local fluid velocity, as does the pressure under a
cnoidal wave; however, it may be approximated by

(1I-1-95)

P =080 - (1I-1-96)
(1) Equation I1-1-96 is identical to that used to approximate the pressure beneath a cnoidal wave.
(m) As asolitary wave moves into shoaling water it eventually becomes unstable and breaks. A solitary

wave breaks when the water particle velocity at the wave crest becomes equal to the wave celerity. This
occurs when (Miles 1980, 1981)
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Figure 11-1-17. Functions M and N in solitary wave theory (Munk 1949)
(5] _ 078 (11-1-97)
d max

(n) Laboratory studies have shown that the value of (H/d),,,. = 0.78 agrees better with observations for
oscillatory waves than for solitary waves and that the nearshore slope has a substantial effect on this ratio.
Other factors such as bottom roughness may also be involved. Tests of periodic waves with periods from 1
to 6 sec on slopes of m=0.0, 0.05, 0.10, and 0.20 have shown (SPM 1984) that H,/d, ratios are approximately
equal to 0.83, 1.05, 1.19, and 1.32, respectively. Tests of single solitary waves on slopes from m = 0.01 to

m = 0.20 (SPM 1984) indicate an empirical relationship between the slope and the breaker height-to-water
depth ratio given by

H
7” = 0.75 + 25m - 112m? + 3870m°> (11-1-98)
b
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in which waves did not break when the slope m was greater than about 0.18 and that as the slope increased
the breaking position moved closer to the shoreline. This accounts for the large values of H,/d, for large
slopes; i.e., as d, ~ 0. For some conditions, Equations I1-1-97 and I1-1-98 are unsatisfactory for predicting
breaking depth. Further discussion of the breaking of waves with experimental results is provided in Part I1-4.

(6) Stream-function wave theory. Numerical approximations to solutions of hydrodynamic equations
describing wave motion have been proposed and developed. Some common theories and associated equations
are listed in Table II-1-2. The approach by Dean (1965, 1974), termed a symmetric, stream-function theory,
is a nonlinear wave theory that is similar to higher order Stokes' theories. Both are constructed of sums of
sine or cosine functions that satisfy the original differential equation (Laplace equation). The theory,
however, determines the coefficient of each higher order term so that a best fit, in the least squares sense, is
obtained to the theoretically posed, dynamic, free-surface boundary condition. Assumptions made in the
theory are identical to those made in the development of the higher order Stokes' solutions. Consequently,
some of the same limitations are inherent in the stream-function theory, and it represents an alternative
solution to the equations used to approximate the wave phenomena. However, the stream-function
representation had successfully predicted the wave phenomena observed in some laboratory wave studies
(Dean and Dalrymple 1991), and thus it may possibly describe naturally occurring wave phenomena.

Table 11-1-2
Boundary Value Problem of Water Wave Theories (Dean 1968)

Exactly Satisfies

Theory DE BBC KFSBC DFSBC

Linear wave theory X
Third-order Stokes X
Fifth-order Stokes X

First-order cnoidal -

Second-order cnoidal -

X X X X X X

Stream function numerical wave X
theory

DE = Differential equation.

BBC = Bottom boundary condition.

KFSBC = Kinematic free surface boundary condition.
DFSBC = Dynamic free surface boundary condition.
X = Exactly satisfies.

(7) Fourier approximation -- Fenton’s theory.

(a) Fenton's Fourier series theory, another theory developed in recent years (Fenton 1988), is somewhat
similar to Dean's stream function theory, but it appears to describe oceanic waves at all water depths better
than all previous similar theories.

(b) The long, tedious computations involved in evaluating the terms of the series expansions that make
up the higher order stream-function theory of Dean had in the past limited its use to either tabular or graphical
presentations of the solutions. These tables, their use, and their range of validity may be found elsewhere
(Dean 1974).

(¢c) Stokes and cnoidal wave theories yield good approximations for waves over a wide range of depths

if high-order expansions are employed. Engineering practice has relied on the Stokes fifth-order theory
(Skjelbreia and Hendrickson 1961), and the stream function theory (Dean 1974). These theories are
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applicable to deepwater applications. An accurate steady wave theory may be developed by numerically
solving the full nonlinear equations with results that are applicable for short waves (deep water) and for long
waves (shallow water). This is the Fourier approximation method. The method is termed Fenton's theory
here. Any periodic function can be approximated by Fourier series, provided the coefficients of the series
can be found. In principal, the coefficients are found numerically. Using this approach, Chappelear (1961)
developed a Fourier series solution by adopting the velocity potential as the primary field variable. Dean
(1965, 1974) developed the stream function theory. The solutions by both Chappelear and Dean successively
correct an initial estimate to minimize errors in the nonlinear free-surface boundary conditions.

(d) A simple Fourier approximation wave theory was introduced by Rienecker and Fenton (1981) and
was subsequently improved by Fenton (1985, 1988; Fenton and McKee 1990). It is an improved numerical
theory that has a range of applicability broader than the Stokes and cnoidal theories. Details of the theory
are given by Reinecker and Fenton (1981) and Fenton (1985, 1988; Fenton and McKee 1990). Sobey et al.
(1987) recasted Fenton's work into a standardized format including currents in the formulation up to fifth
order. The theory has been implemented to calculate wave kinematics and the loading of offshore structures
(Demirbilek 1985). For coastal applications, a PC-based computer code of Fenton’s theory is available in
the Automated Coastal Engineering System (ACES) (Leenknecht, Szuwalski, and Sherlock 1992). A brief
description of Fenton's theory is given here; details are provided in ACES.

() Fenton’s Fourier approximation wave theory satisfies field equations and boundary conditions to
a specified level of accuracy. The hydrodynamic equations governing the problem are identical to those used
in Stokes’ theory (Table II-1-2). Various approximations introduced in earlier developments are indicated
in the table. Like other theories, Fenton’s theory adopts the same field equation and boundary conditions.
There are three major differences between Fenton’s theory and the others. First, Fenton’s theory is valid for
deep- and shallow-water depths, and any of the two quantities’ wave height, period or energy flux can be
specified to obtain a solution. Second, the Fourier coefficients are computed numerically with efficient
algorithms. Third, the expansion parameter for the Fourier coefficients is € = kH/2 rather than € = ka, which
is used in Stokes theories. The coefficients are found numerically from simultaneous algebraic equations by
satisfying two nonlinear free-surface boundary conditions and the dispersion relationship. Finding the
coefficients requires that wave height, wave period, water depth, and either the Eulerian current or the depth-
averaged mass transport velocity be specified.

(f) InFenton’stheory, the governing field equation describing wave motion is the two-dimensional (x,z
in the Cartesian frame) Laplace’s equation, which in essence is an expression of the conservation of mass:

2 2
vy - I oY (11-1-99)

ox? 0z?

where YV is the stream function. ¥is a periodic function that describes wave motion in space and time, which
also relates to the flow rate.

(g) Wave motion is a boundary-value problem, and its solution requires specifying realistic boundary
conditions. These boundary conditions are usually imposed at the free surface and sea bottom. Since the
seabed is often impermeable, flow rate through the sea bottom must be zero. Therefore, the bottom boundary
condition may be stated in terms of ¥ as

Y(x,-d) =0 atz = -d (11-1-100)

(h) Two boundary conditions, kinematic and dynamic, are needed at the free surface. The kinematic
condition states that water particles on the free surface remain there, and consequently, flow rate through the
surface boundary must be zero. The net flow Q between the sea surface and seabed may be specified as
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Y(xm) = -0 at z = 1 (II-1-101)

where 7 is the sea surface elevation. The dynamic free-surface boundary condition is an expression of
specifying the pressure at the free surface that is constant and equal to the atmospheric pressure. In terms of
the stream function V¥ this condition may be stated as

1) ow)? ov)?
R x| [ X + - R at z = II-1-102
W) () e wee ar-102

in which R is the Bernoulli constant.

(i) The boundary-value problem for wave motion as formulated above is complete. The time-
dependency may be removed from the problem formulation by simply adapting a coordinate system that
moves with the same velocity as the wave phase speed (Fenton 1988; Fenton and McKee 1990; Sobey et al.
1987). This is equivalent to introducing an underlying current relative to which the wave motion is measured.
The current (also called Stokes ’ drift velocity or Eulerian current) causes a Doppler shift of the apparent wave
period measured relative to a stationary observer or gauge. The underlying current velocity must therefore
also be known in order to solve the wave problem in the steady (moving) reference frame.

(j) Fenton’s solution method uses the Fourier cosine series in kx to the governing equations. Itis clearly
an approximation, but very accurate, since results of this theory appear not to be restricted to any water
depths. €= kH/2 is the expansion parameter replacing ka in the Stokes wave theory. The dependent variable
is the stream function ¥ represented by a Fourier cosine series in kx, expressed up to the Nth order as

1w inh jk(z + d)
P(xz) = -ulz+d) + | 5|2 p SMJMZ * d) s ikx 11-1-103
(.2) (z+d) (k3) ]E] 7 cosh jkd / ( :

where the B; are dimensionless Fourier coefficients. The truncation limit of the series N determines the order
ofthe theory. The nonlinear free-surface boundary conditions are satisfied at each of M+1 equi-spaced points
on the surface. Wave height, wave period, water depth, and either the mean Eulerian velocity or the Stokes
drift velocity must be specified to obtain a solution.

(k) The solution is obtained by numerically computing the N Fourier coefficients that satisfy a system
of simultaneous equations. The numerical solution solves a set of 2M+6 algebraic equations to find unknown
Fourier coefficients. The problem is uniquely specified when M = N and overspecified when M > N. Earlier
wave theories based on stream function consider the overspecified case and used a least-squares method to
find the coefficients. Fenton was the first to consider the uniquely specified case and used the collocation
method to produce the most accurate and computationally efficient solution valid for any water depth.

(I) An initial estimate is required to determine the M+N+6 variables. The linear theory provides this
initial estimate for deep water. In relatively shallow water, additional Fourier components are introduced.
An alternative method is used in the shallow-water case by increasing the wave height in a number of steps.
Smaller heights are used as starting solutions for subsequent higher wave heights. This approach eliminates
the triple-crested waves reported by others (Huang and Hudspeth 1984; Dalrymple and Solana 1986).

(m) Sobey etal. (1987) compared several numerical methods for steady water wave problems, including
Fenton’s. Their comparison indicated that accurate results may be obtained with Fourier series of 10 to 20
terms, even for waves close to breaking. Comparisons with other numerical methods and experimental data
(Fenton and McKee 1990; Sobey 1990) showed that results from Fenton’s theory and experiments agree
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consistently and better than results from other theories for a wide range of wave height, wave period, and
water depth. Based on these comparisons, Fenton and McKee (1990) define the regions of validity of Stokes
and cnoidal wave theory as

H
-1.87—
% = 21.5 e( d) (I1-1-104)

(n) The cnoidal theory should be used for wavelengths longer than those defined in this equation. For
shorter waves, Stokes’ theory is applicable. Fenton’s theory can be used over the entire range, including
obtaining realistic solutions for waves near breaking.

(o) In water of finite depth, the greatest (unbroken) wave that could prevail as a function of both
wavelength and depth is determined by Fenton and McKee (1990) as

2 3
0.141063% . 0.0095721(5) . 0.0077829(%)

(11-1-105)

i

L L)? L)’
1.0 + 0.0788342 + 0.0317567 = 0.0093407 =

(p) The leading term in the numerator of this equation is the familiar steepness limit for short waves in
deep water. For large values of L/d (i.e., shallow-water waves), the ratio of cubic terms in the above equation
approaches the familiar 0.8 value, a limit for depth-induced breaking of the solitary waves. Therefore, the
above equation may also be used as a guide to delineate unrealistic waves in a given water depth.

(q) The formulas for wave kinematics, dynamics, and wave integral properties for Fenton’s theory have
been derived and summarized (Sobey et al.1987; Klopman 1990). Only the engineering quantities of interest
including water particle velocities, accelerations, pressure, and water surface elevation defined relative to a
Eulerian reference frame are provided here.

(r) The horizontal and vertical components of the fluid particle velocity are

L n .
oY . - gl2 ., cosh jk(z+d) .
e N L A [ 4 p, SOSWKCE) i 11-1-106
) = 3 (k) ,Zl PP coshjkad ( )
v 1 N il ik
wz) = X - [ &2y jp sinhjkErd) G (11-1-107)
Ox k) =77 coshjkd

(s) Fluid particle accelerations in the horizontal and vertical directions are found by differentiating the
velocities and using the continuity equation. These component accelerations are

a, (xz) = Du _ u@ + W%
Dt ox oz (1I-1-108)

_Dw _ ow ow _ du ou
a(xz) = — = U— + W— = U— - W—
Dt ox oz oz ox

where
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du_ (2|2 y jp COSMKCED) Gy (11-1-109)
ox k) i3 ! cosh jkd
5 1l W ik
_u = g 2 sz w Cosjkx (11-1-110)
oz k) = cosh jkd

(t) The instantaneous water surface elevation n(x) and water particle pressure are given by

=

1 = .
nx) = EaN cos Nkx + a, cos jkx

~.
—_

(I-1-111)

2+W2)

px,z) = p(R-gd-gz) - %p(u

(u) Integral properties of periodic gravity waves, including wave potential and kinetic energy, wave
momentum and impulse, wave energy flux and wave power, and wave radiation stresses obtained by
Klopman (1990) and Sobey et al. (1987) are listed in the Leenknecht, Szuwalski, and Sherlock (1992)
documentation.

(v) A computer program developed by Fenton (1988) has recently been implemented in the ACES
package. The ACES implementation facilitates use of Fenton’s theory to applications in deep water and
finite-depth water. It uses Fourier series of up to 25 terms to describe a wave train and provides information
about various wave quantities. The output includes wave estimates for common engineering parameters
including water surface elevation, wave particle kinematics, and wave integral properties as functions of wave
height, period, water depth, and position in the wave form.

(w) The wave is assumed to co-exist on a uniform co-flowing current, taken either as the mean Eulerian
current or mean mass transport velocity. Ata given point in the water column, wave kinematics are tabulated
over two wavelengths, and vertical distribution of the selected kinematics under the wave crest are graphically
displayed. ACES implementation of Fenton’s theory and its input/output requirements, computations, and
examples are described in detail in the ACES documentation manual (Leenknecht, Szuwalski, and Sherlock
1992).

(x) Figure II-1-18 illustrates the application of Fenton’s theory. This case represents shallow-water
(10-m) conditions and wave height and period of 5 m and 10 sec, respectively. Surface elevation, horizontal
velocity, and pressure over two wavelengths is shown graphically in Figure 1I-1-18. The ACES
documentation includes guidance on proper use of Fenton’s theory.
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Figure 11-1-18. Surface elevation, horizontal velocity, and pressure in 10-m depth

(using Fenton’s theory in ACES)
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f. Wave breaking.

(1) Wave height is limited by both depth and wavelength. For a given water depth and wave period,
there is a maximum height limit above which the wave becomes unstable and breaks. This upper limit of
wave height, called breaking wave height, is in deep water a function of the wavelength. In shallow and
transitional water it is a function of both depth and wavelength. Wave breaking is a complex phenomenon
and it is one of the areas in wave mechanics that has been investigated extensively both experimentally and
numerically.

(2) Researchers have made some progress over the last three decades in the numerical modeling of
waves close to breaking (Longuet-Higgins and Fenton 1974; Longuet-Higgins 1974; 1976; Schwartz 1974;
Dalrymple and Dean 1975; Byatt-Smith and Longuet-Higgins 1976; Peregrine 1976; Cokelet 1977; Longuet-
Higgins and Fox 1977; Longuet-Higgins 1985; Williams 1981; 1985). These studies suggest the limiting
wave steepness to be H/L = 0.141 in deep water and H/d = 0.83 for solitary waves in shallow water with a
corresponding solitary wave celerity of ¢/(gd)"”* = 1.29.

(3) Dalrymple and Dean (1975) investigated the maximum wave height in the presence of a steady uni-
form current using the stream function theory. Figure I1-1-19 shows the influence of a uniform current on
the maximum wave height where T is the wave period in a fixed reference frame and U is the current speed.

(4) The treatment of wave breaking in the propagation of waves is discussed in Part II-3. Information
about wave breaking in deep and shoaling water and its relation to nearshore processes is provided in
Part 11-4.

g Validity of wave theories.

(1) To ensure their proper use, the range of validity for various wave theories described in this chapter
must be established. Very high-order Stokes theories provide a reference against which the accuracy of
various theories may be tested. Nonlinear wave theories better describe mass transport, wave breaking,
shoaling, reflection, transmission, and other nonlinear characteristics. Therefore, the usage of the linear
theory has to be carefully evaluated for final design estimates in coastal practice. It is often imperative in
coastal projects to use nonlinear wave theories.

(2) Wave amplitude and period may sometimes be estimated from empirical data. When data are
lacking or inadequate, uncertainty in wave height and period estimates can give rise to a greater uncertainty
in the ultimate answer than does neglecting the effect of nonlinear processes. The additional effort necessary
for using nonlinear theories may not be justified when large uncertainties exist in the wave data used for
design. Otherwise, nonlinear wave theories usually provide safer and more accurate estimates.

(3) Dean (1968, 1974) presented an analysis by defining the regions of validity of wave theories in
terms of parameters H/T* and d/T* since T® is proportional to the wavelength. Le Méhauté (1976) presented
a slightly different analysis (Figure I1-1-20) to illustrate the approximate limits of validity for several wave
theories, including the third- and fourth-order theories of Stokes. In Figure I1-1-20, the fourth-order Stokes
theory may be replaced with more popular fifth-order theory, since the latter is often used in applications.
Both Le Méhauté and Dean recommend cnoidal theory for shallow-water waves of low steepness, and Stokes’
higher order theories for steep waves in deep water. Linear theory is recommended for small steepness H/T*
and small Uy values. For low steepness waves in transitional and deep water, linear theory is adequate but
other wave theories may also be used in this region. Fenton’s theory is appropriate for most of the wave
parameter domain. For given values of H, d, and T, Figure II-1-20 should be used as a guide to select an
appropriate wave theory.
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Figure 11-1-19. Influence of a uniform current on the maximum wave height
(Dalrymple and Dean 1975)

(4) It is necessary to know the limiting value of wave heights and wave steepness at different water
depths to establish range of validity of any wave theory that uses a Stokes-type expansion. This is
customarily done by comparing the magnitude of each successive term in the expansion. Each should be
smaller than the term preceding it. For example, if the second term is to be less than 1 percent of the first term
in the Stokes second-order theory, the limiting wave steepness is

(II-1-112)

H . 1 sinh® kd
L~ 80 cosh kd (3 + 2 sinh® kd)

(5) If the third-order term is to be less than 1 percent of the second-order term, the limiting wave
steepness is

sinh® kd

1
7 Y1 + 8 cosh® kd

<

(1I-1-113)

H
L
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Figure 1I-1-20. Ranges of suitability of various wave theories (Le Méhauté 1976)

(6) Similarly, using the fifth-order expansion, the asymptotes to Stokes third-order theory are H/L, <
0.1 and H/d < 3/4(kd)’ for deep water and shallow water, respectively. This allows the range of Stokes’
theory to be expanded by adding successively smaller areas to the domain of linear theory in Figure 11-1-20
until the breaking limit is reached. The fifth-order Stokes theory gets close enough to the breaking limit, and
higher order solutions may not be warranted. Laitone (1962) suggests a shallow-water limit on Stokes’ theory
by setting the Ursell number U, equal to 20. For an Ursell number of approximately 20, Stokes’ theory
approaches the cnoidal theory.

(7) The magnitude of the Ursell number U, (sometimes also called the Stokes number) shown in
Figure 11-1-20 may be used to establish the boundaries of regions where a particular wave theory should be
used. Stokes (1847) noted that this parameter should be small for long waves. An alternative, named the
Universal parameter (U,), has recently been suggested (Goda 1983) for classification of wave theories.

(8) Limits of validity of the nonlinear (higher-order) wave theories established by Cokelet (1977) and
Williams (1981), are shown in Figure II-1-21. Regions where Stokes waves (short waves) and cnoidal and
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solitary waves (long waves) are valid are also shown in this figure. The breaking limit for solitary waves
H,”'= 0.833 established by Williams (1981) and the limiting height designated as H,” determined by Cokelet
(1977) are also shown on Figure II-1-21. The line between short and long waves corresponds to a value of
the Ursell number U, = 79. This theoretical partition agrees with data from Van Dorn (1966).

1.0 w
Hy

o|T

Wb ——~ Up< 0.3
0.5 b —= LONG WAVES
Ur< 79
Up< 0.3
Ur< 79
STOKES WAVES
0.0 T T T
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d

Figure 11-1-21. Grouping of wind waves based on universal parameter and limiting height for steep waves

11-1-3. Irregular Waves
a. Introduction.

(1) In the first part of this chapter, waves on the sea surface were assumed to be nearly sinusoidal with
constant height, period and direction (i.e., monochromatic waves). Visual observation of the sea surface (as
in the radar image of the entrance to San Francisco Bay in Figure 1I-1-22) and measurements (such as in
Figure 11-1-23) indicate that the sea surface is composed of waves of varying heights and periods moving in
differing directions. In the first part of this chapter, wave height, period, and direction could be treated as
deterministic quantities. Once we recognize the fundamental variability of the sea surface, it becomes
necessary to treat the characteristics of the sea surface in statistical terms. This complicates the analysis but
more realistically describes the sea surface. The term irregular waves will be used to denote natural sea states
in which the wave characteristics are expected to have a statistical variability in contrast to
monochromatic waves, where the properties may be assumed constant. Monochromatic waves may be
generated in the laboratory but are rare in nature. “Swell” describes the natural waves that appear most like
monochromatic waves in deep water, but swell, too, is fundamentally irregular in nature. We note that the
sea state in nature during a storm is always short-crested and irregular. Waves that have travelled far from
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EXAMPLE PROBLEM II-1-6

FIND:

GIVEN:

SOLUTION:

(a) Calculate dimensionless parameters necessary for using Figure 11-1-20. These are

d
gT?
H
gT?

H_ g

d

~ 0.01

~ 0.009

12 "M

55

From Figure II-1-20, the applicable theory is cnoidal.

(b) In a similar fashion, compute

Jed ~ 40 -
sec

U = 1.5

Applicable wave theory for waves in (a) and (b). Which of these waves is a long wave?

(@a). d=15m H=122m, T=12sec; (b).d=150m, H=30 m, T = 16 sec.

With these values, Figure I1I-1-20 indicates the applicable theory is Stokes third- or fifth-order. It is noted
that the linear theory is also applicable.

Based on the values of Ursell parameter, neither wave (a) or (b) is a true long wave. Wave (a) may be

considered a long wave in comparison to wave (b).
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Figure lI-1-22. Radar image of the sea surface in the entrance to San Francisco Bay

the region of generation are called swells. These waves have a much more limited range of variability,
sometimes appearing almost monochromatic and long-crested.

(2) When the wind is blowing and the waves are growing in response, the sea surface tends to be
confused: a wide range of heights and periods is observed and the length of individual wave crests may only
be a wave length or two in extent (short-crested). Such waves are called wind seas, or often, just sea. Long-
period waves that have traveled far from their region of origin tend to be more uniform in height, period, and
direction and have long individual crests, often many wave lengths in extent (i.e., long-crested). These are
termed swell. A sea state may consist of just sea or just swell or may be a combination of both.

(3) The ocean surface is often a combination of many wave components. These individual components
were generated by the wind in different regions of the ocean and have propagated to the point of observation.
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Figure 1I-1-23. Measured sea surface velocity in the entrance to San Francisco Bay

If a recorder were to measure waves at a fixed location on the ocean, a non-repeating wave profile would be
seen and the wave surface record would be rather irregular and random (Figure 11-1-23). Although individual
waves can be identified, there is significant variability in height and period from wave to wave.
Consequently, definitions of wave height, period, and duration must be statistical and simply indicate the
severity of wave conditions.

(4) Wave profiles are depicted in Figure 1I-1-24 for different sea conditions. Figure II-1-25 shows a
typical wave surface elevation time series measured for an irregular sea state. Important features of the field-
recorded waves and wave parameters to be used in describing irregular waves later in this section are defined
in Figures I1-1-26 and II-1-27. We note that the sea state in nature during a storm is always short-crested and
irregular. Waves that have traveled far from the region of generation are called swells. These waves have
much more limited range of variability sometimes appearing monochromatic and long-crested.

(5) This part of Part II-1 will develop methods for describing and analyzing natural sea states. The
concept of significant wave height, which has been found to be a very useful index to characterize the heights
of'the waves on the sea surface, will be introduced. Peak period and mean wave direction which characterize
the dominant periodicity and direction of the waves, will be defined. However, these parameterizations of
the sea surface in some sense only index how big some of the waves are. When using irregular wave heights
in engineering, the engineer must always recognize that larger and smaller (also longer and shorter) waves
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Figure 11-1-25. Wave profile of irregular sea state from site measurements
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Figure 1I-1-26. Definition of wave parameters for a random sea state
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Figure 1I-1-27. Definition sketch of a random wave process (Ochi 1973)

are present. The monochromatic wave theories described in the first part of this chapter will be seen to have
two major uses. One use is to estimate the kinematics and dynamics associated with a wave with the
significant wave height, peak period, and direction. The other is when an individual wave has been isolated
in a wave record to estimate the velocities, accelerations, forces, etc., associated with that individual wave
event. The engineer must recognize that the implication of the statistical nature of irregular waves implies
that the kinematics and dynamics likewise require statistical treatment. IAHR (1986) provides a detailed
description of parameters and terminology used with irregular waves.

(6) Two approaches exist for treating irregular waves: spectral methods and wave-by-wave (wave train)
analysis. Spectral approaches are based on the Fourier Transform of the sea surface. Indeed this is currently
the most mathematically appropriate approach for analyzing a time-dependent, three-dimensional sea surface
record. Unfortunately, it is exceedingly complex and at present few measurements are available that could
fully tap the potential of this method. However, simplified forms of this approach have been proven to be
very useful. The other approach used is wave-by-wave analysis. In this analysis method, a time-history of
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the sea surface at a point is used, the undulations are identified as waves, and statistics of the record are
developed. This is a very natural introduction to irregular waves and will be presented first before the more
complicated spectral approach is presented. The primary drawback to the wave-by-wave analysis is that it
cannot tell anything about the direction of the waves. Indeed, what appears to be a single wave at a point
may actually be the local superposition of two smaller waves from different directions that happen to be
intersecting at that time. Disadvantages of the spectral approach are the fact that it is linear and can distort
the representation of nonlinear waves.

b.  Wave train (wave-by-wave) analysis.
(1) Introduction.

(a) Wave train analysis requires direct measurements of irregular seas. A typical irregular wave record
obtained from a wave-measuring device is shown in Figure [I-1-25. The recorded wave traces have to be of
finite length with the sea surface sampled at a set interval (typically every second). The time-history of sea
surface elevation at a point is a random-appearing signal exhibiting many maxima and minima (Figures II-1-
26 and 11-1-27). It is necessary to develop a criterion for identifying individual waves in the record.

(b) In a wave-by-wave analysis, undulation in the time-history of the surface must be divided into a
series of segments, which will then be considered as individual waves. The height and period of each wave
will be measured. Once this is done for every segment of the record, statistical characteristics of the record
can be estimated, and the statistics of the record are compiled.

(¢) Knowing the statistics of one record can be useful in itself, particularly if the record is important
(such as the observation of waves at a site when a structure failed). However, it would be helpful to know
whether the statistical characteristics of individual wave records followed any consistent pattern. Statistics
of the sea state could be predicted knowing only a little about the wave conditions. It would be very useful
if the distribution of wave characteristics in a wave record followed a known statistical distribution. After
defining characteristics of individual records, the larger statistical question will be addressed.

(d) Inthetime-domain analysis of irregular or random seas, wave height and period, wavelength, wave
crest, and trough have to be carefully defined for the analysis to be performed. The definitions provided
earlier in the regular wave section of this chapter assumed that the crest of a wave is any maximum in the
wave record, while the trough can be any minimum. However, these definitions may fail when two crests
occur within an intervening trough lying below the mean water line. Also, there is not a unique definition
for wave period, since it can be taken as the time interval between either two neighboring wave troughs or
two crests. Other more common definitions of wave period are the time interval between successive crossings
of the mean water level by the water surface in a downward direction called zero down-crossing period or
zero up-crossing period for the period deduced from successive up-crossings.

(2) Zero-crossing method.

(a) The adopted engineering procedure is the zero-crossing technique, where a wave is defined when
the surface elevation crosses the zero-line or the mean water level (MWL) upward and continues until the
next crossing point. This is the zero-upcrossing method. When a wave is defined by the downward crossing
of the zero-line by the surface elevation, the method is the zero-downcrossing.

(b) The zero-crossing wave height is the difference in water surface elevation of the highest crest and
lowest trough between successive zero-crossings. The definition of wave height depends on the choice of
trough occurring before or after the crest. Here, a wave will be identified as an event between two successive
zero-upcrossings and wave periods and heights are defined accordingly. Note that there can be differences
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between the definitions of wave parameters obtained by the zero up- and down-crossing methods for
description of irregular sea states.

(¢) Both methods usually yield statistically similar mean values of wave parameters. There seems to
be some preference for the zero-downcrossing method (IAHR 1986). The downcrossing method may be
preferred due to the definition of wave height used in this method (the vertical distance from a wave trough
to the following crest). It has been suggested that this definition of wave height may be better suited for
extreme waves (IAHR 1986).

(d) Using these definitions of wave parameters for an irregular sea state, it is seen in Figures 11-1-26 and
II-1-27 that, unlike the regular (monochromatic) sinusoidal waves, the periods and heights of irregular waves
are not constant with time, changing from wave to wave. Wave-by-wave analysis determines wave properties
by finding average statistical quantities (i.e., heights and periods) of the individual wave components present
in the wave record. Wave records must be of sufficient length to contain several hundred waves for the
calculated statistics to be reliable.

(e) Wave train analysis is essentially a manual process of identifying the heights and periods of the
individual wave components followed by a simple counting of zero-crossings and wave crests in the wave
record. The process begins by dissecting the entire record into a series of subsets for which individual wave
heights and periods are then noted for every zero down-crossing or up-crossing, depending on the method
selected. In the interest of reducing manual effort, it is customary to define wave height as the vertical
distance between the highest and lowest points, while wave period is defined as the horizontal distance
between two successive zero-crossing points (Figures I1-1-26 and 11-1-27). In this analysis, all local maxima
and minima not crossing the zero-line have to be discarded. From this information, several wave statistical
parameters are subsequently calculated. Computer programs are available to do this (IAHR 1986).

(3) Definition of wave parameters.

(a) Determination of wave statistics involves the actual processing of wave information using the
principles of statistical theory. A highly desirable goal is to produce some statistical estimates from the
analyzed time-series data to describe an irregular sea state in a simple parametric form. For engineering, it
is necessary to have a few simple parameters that in some sense tell us how severe the sea state is and a way
to estimate or predict what the statistical characteristics of a wave record might be had it been measured and
saved. Fortunately, millions of wave records have been observed and a theoretical/empirical basis has
evolved to describe the behavior of the statistics of individual records.

(b) For parameterization, there are many short-term candidate parameters which may be used to define
statistics of irregular sea states. Two of the most important parameters necessary for adequately quantifying
a given sea state are characteristic height A and characteristic period 7. Other parameters related to the
combined characteristics of H and 7, may also be used in the parametric representation of irregular seas.

(c) Characteristic wave height for an irregular sea state may be defined in several ways. These include
the mean height, the root-mean-square height, and the mean height of the highest one-third of all waves
known as the significant height. Among these, the most commonly used is the significant height, denoted
as H,or H,;. Significant wave height has been found to be very similar to the estimated visual height by an
experienced observer (Kinsman 1965). The characteristic period could be the mean period, or average zero-
crossing period, etc.

(d) Other statistical quantities are commonly ascribed to sea states in the related literature and practice.
For example, the mean of all the measured wave heights in the entire record analyzed is called the mean wave
height H. The largest wave height in the record is the maximum wave height H, . The root-mean-square of
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all the measured wave heights is the rms wave height H,,.. The average height of the largest //n of all waves

in the record is the H,, where n =10, 11, 12, 13,..., 99, 100 are common values. For instance, H,,, is the

mean height of the highest one-tenth waves. In coastal projects, engineers are faced with designing for the

maximum expected, the highest possible waves, or some other equivalent wave height. From one wave record

measured at a point, these heights may be estimated by ordering waves from the largest to the smallest and

assigning to them a number from / to N. The significant wave height H, ; or H, will be the average of the first
(highest) N/3 waves.

() The probability that a wave height is greater (less) than or equal to a design wave height H, may be

found from
PH>H) =2
N (I1-1-114)
PH<H)y=-1-2
( ) v

where m is the number of waves higher than H,. For an individual observed wave record the probability
distribution P(H > H,) can be formulated in tabular form and possibly fitted by some well-known distribution.
The root-mean-square wave height H,,, may be computed as

4l 2
Y H (II-1-115)

H}’mY = i
X N 5 j

in which H, denote the ordered individual wave heights in the record.

(f) Probability distributions discussed in the irregular wave section of the CEM refer to short term wave
statistics. This subject concerns the probability that a wave of a given height will occur given that we know
the statistics of the sea surface over a 16- to 60-min period. A short-term wave statistics question might be,
for example, “If we have measured the waves for 15 min and found that H; is 2m, what is the chance that a
wave of 4 m may occur?” This must be contrasted to long-term wave statistics. To obtain long-term wave
statistics, a 15-min record may have been recorded (and statistics of each record computed) every 3 hr for 10
years (about 29,000 records) and the statistics of the set 0£29,000 significant wave heights compiled. A long-
term wave statistics question might be, “If the mean significant wave height may be 2m with a standard
deviation of 0.75m, what is the chance that once in 10 years the significant wave height will exceed 4 m?”
These are two entirely different statistical questions and must be treated differently.

(g) A similar approach can be used for the wave period. The mean zero-crossing period is called the
zero-crossing period T,. The average wave period between two neighboring wave crests is the wave crest
period 7. Therefore, in the time domain wave record analysis, the average wave period may also be obtained
from the total length of record length T. either using T, or T, (Tucker 1963). These periods are related to T,
by

T}"
e
N

: 11-1-116)
Tr
y—
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where N, and N, are the number of zero-upcrossings and crests in the wave record, respectively. We
emphasize that in Tucker’s method of wave train analysis, crests are defined by zero-crossing. Note also by
definition of these periods that T, < 7.

(h) The list of definitions stated above is not all-inclusive, and several other statistical quantities may
be obtained from a wave train analysis (Ochi 1973; IAHR 1986). For example, the rms surface elevation ,,,,
(described later in the short-term sea states section) (o in IAHR list) defines the standard deviation of the
surface elevation, and the significant wave height H. is related to #,,,, by

H =38n

~ 41 (I1-1-117)

rms rms

(4) Significant wave height.

(a) The significant wave height H, (or H, ) is the most important quantity used describing a sea state
and thus, is discussed further here for completeness. The concept of significant wave height was first
introduced by Sverdrup and Munk (1947). It may be determined directly from a wave record in a number
of ways. The most frequently used approach in wave-by-wave analysis is to rank waves in a wave record and
then choose the highest one-third waves. The average of the chosen waves defines the significant wave height
as

=
W)

™

H, (11-1-118)

w
w|=z|—
i

where N is the number of individual wave heights H; in a record ranked highest to lowest.

(b) Sverdrup and Munk (1947) defined significant wave height in this fashion because they were
attempting to correlate what sailors reported to what was measured. Hence, this is an empirically driven
definition. Today, when wave measuring is generally automated, some other parameter might be appropriate,
but significant wave height remains in recognition of its historical precedence and because it has a fairly
tangible connection to what observers report when they try to reduce the complexity of the sea surface to one
number. It is important to recognize that it is a statistical construct based only on the height distribution.
Knowing the significant height from a record tells us nothing about period or direction.

(5) Short-term random sea state parameters.

(a) It is well-known that any periodic signal #(z) with a zero mean value can be separated into its
frequency components using the standard Fourier analysis. Periodic wave records may generally be treated
as random processes governed by laws of the probability theory. If the wave record is a random signal, the
term used is random waves. For a great many purposes, ocean wave records may be considered random (Rice
1944-1945, Kinsman 1965, Phillips 1977, Price and Bishop 1974).

(b) The statistical properties of a random signal like the wave surface profile may be obtained from a
set of many simultaneous observations called an ensemble or set of signals {#,(?), 11,(?), 15(¢)....}, but not from
a single observation. A single observation even infinitely long may not be sufficient for determining the
spatial variability of wave statistics. An ensemble consists of different realizations or measurements of the
process 7(t) at some known locations. To determine wave properties from the process #(?), certain
assumptions related to its time and spatial variation must be made.
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(c) First, it would be necessary to assume that the process described by the wave record (i.e., a sea
state), say 7(t), is stationary, which means that the statistical properties of 7(z) are independent of the origin
of time measurement. Since the statistics of stationary processes are time-invariant, there is no drift with time
in the statistical behavior of #(z). The stationarity requirement is necessary as we shall see later for
developing a probability distribution for waves, which is the fraction or percentage of time an event or
process (say, the sea state depicted in time series of the wave surface profile) is not exceeded. The probability
distribution may be obtained by taking #,(%,), #,(t,), 15(¢,),..., as variables, independent of the instant ¢,. Ifin
addition, 7(2) can be measured at different locations and the properties of #(?) are invariant or do not depend
on location of measurements, the process may then be assumed homogenous. Inreality, 7(¢) may be assumed
stationary and homogenous only for a limited duration at the location data are gathered. Wind waves may
be considered approximately stationary for only a few hours (3 hr or less), beyond which their properties are
expected to change.

(d) Second, the process 7() is assumed to be ergodic, which means that any measured record of the
process say #,(?) is typical of all other possible realizations, and therefore, the average of a single record in
an ensemble is the same as the average across the ensemble. For an ergodic process, the sample mean from
the ensemble approaches the real mean u, and the sample variance approaches the variance o of the process
(sea state). The ergodicity of #(?) implies that the measured realization of (), say #,(t,) is typical of all other
possible realizations 7,(%,), #;(,), ...., all measured at one instant #,, The concept of ergodicity permits
derivation of various useful statistical information from a single record, eliminating the need for multiple
recordings at different sites. The assumptions of stationarity and ergodicity are the backbones of developing
wave statistics from wave measurements. It is implicitly assumed that such hypotheses exist in reality, and
are valid, particularly for the sea state.

(e) To apply these concepts to ocean waves, consider an ensemble of records representing the sea state
by 5(1) over a finite time 7. The mean or expected value of the sea state, denoted by #, or u,, or Efn], is
defined as

by = EMO) = = [ 2 00 dr (I1-1-119)
T

where the symbol £ denotes the expected value of #(?). Similarly, the mean-square of # corresponds to the
second moment of #, denoted by E/n’]. The standard deviation o, or the root-mean-square value of the
process is the square root of this. The variance of 5, represented by ,” may be expressed in terms of the
variance of the process V as

o, = V@] = EM] - u; (11-1-120)

(f) The standard deviation o, is the square root of the variance, also called the second central moment
of #(¢). The standard deviation characterizes the spread in the values of #(?) about its mean.

(g) The autocorrelation or autocovariance function of the sea state is denoted by R, , relating the value
of # at time ¢ to its value at a later time #+7. This is defined as

Rn(t’ t+1) = E[m(9) n(t+1)] (II-1-121)

(h) The value of R, gives an indication of the correlation of the signal with itself for various time lags
7, and so it is a measure of the temporal variation of #(#) with time. If the signal is perfectly correlated with
itself for zero lag 7, its autocorrelation coefficient, defined as
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_Em@ @] - Ry (I-1-122)

! E[n] En]

will be equal to 1.

(i) For two different random signals #, and #,, the cross-correlation coefficient R may be defined as

R = E[,(t) ny(t+31)] = % fz N,(2) Ny (1+31) dt (II-1-123)
2

which measures the degree of correlation between two signals. This concept is useful for example in relating
wave velocities and pressures obtained at two separate locations during wave gauge measurements in coastal
projects. Note that the process #(?) is stationary if u, and o, are constant for all values of #, and that R is a
function only of 7 =¢, - ¢,.

(j) Assuming that the water surface elevation 7() is a stationary random process, representing a sea
state over the duration of several hours, we will next focus our attention on defining the probabilistic
properties of ocean waves. The probabilistic representation of sea state is useful in practice for two reasons.
First, it allows the designer to choose wave parameters within a limit that will yield an acceptable level of
risk. Second, a probabilistic-based design criterion may result in substantial cost savings by considering
uncertainties in the wave estimates. Therefore, an overview of the probability laws and distributions for
ocean waves follows.

(6) Probability distributions for a sea state.

(a) Asnoted earlier, irregular sea states are random signals. For engineers to effectively use irregular
waves in design, properties of the individual wave records must follow some probability laws so that wave
statistics can readily be obtained analytically. Rice (1944-1945) developed the statistical theory of random
signals for electrical noise analysis. Longuet-Higgins (1952) applied this theory to the random water surface
elevation of ocean waves to describe their statistics using certain simplified assumptions. Longuet-Higgins
found that the parameters of a random wave signal follow known probability laws.

(b) The probability distribution P(x) is the fraction of events that a particular event is not exceeded.
It can be obtained directly from a plot of the proportion of values less than a particular value versus the
particular value of the variable x,, and is given by

P(x) = probf < x} (I-1-124)
(¢c) The probability density p(x) is the fraction of events that a particular event is expected to occur and

thus, it represents the rate of change of a distribution and may be obtained by simply differentiating P(x) with
respect to its argument x.

(d) The two most commonly used probability distributions in the study of random ocean waves are the
Gaussian (Figure 11-1-28) and Rayleigh distributions (Figure 1I-1-29).  The Gaussian distribution is
particularly suited for describing the short-term probabilities of the sea surface elevation 1. Its probability
density is given by
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Figure 1I-1-28. The Gaussian probability density and cumulative probability distribution
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Figure 11-1-29. The Rayleigh probability density and cumulative probability distribution (x = a corresponds to
the mode)
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1 20;%
p(x) = e (I1-1-125)

6./2%

where u, is the mean of x and g, is the standard deviation. The Gaussian cumulative probability or probability
distribution denoted by P(x) in Figure I1I-1-28, is the integral of p(x). A closed form of this integral is not
possible. Therefore, Gaussian distribution is often tabulated as the normal distribution with the mean x, and
standard deviation o, in handbooks (e.g., Abramowitz and Stegun (1965)), and is written as

pe) - Nwoo) — P@) - O

(11-1-126)

X

For zero mean (1, = 0) and unit standard deviation (¢, = 1), the Gaussian probability density and distributions
reduce to

V2n (I1-1-127)

where the last integral is the error function.

(f) The probability of exceedence Q(x) may be expressed in terms of the probability of non-exceedence
P(x) as

Q[x(t)>xl] =1 - P[x(t)<xl] =1 -®

(11-1-128)

(g) This is the probability that x will exceed x, over the time period ¢, and is shown as the shaded area
in the bottom lower end of Figure 1I-1-28. The probability of exceedence is an important design parameter
in risk-based design.

(h) Inengineering practice, we are normally concerned with wave height rather than surface elevation.
However, to define wave height distribution, we only need to examine the statistics of the slowly varying
envelope of the surface elevation 7(z). With this approach, Longuet-Higgins (1952) found from statistical
theory that both wave amplitudes and heights follow the Rayleigh distribution shown in Figure 1I-1-29. Note
that this distribution can never be negative, it decays asymptotically to zero for large x, but never reaches
zero. The probability density function of the Rayleigh distribution and its cumulative probability are given

by
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,ﬁ(i)*
px) = n_xz e W for x> 0
2p; (II-1-129)

{1 - eg(”ij Jor x > 0 }

where u_ is the mean. These are displayed in Figure I1-1-29 in which the density function is offset to the right
and has only positive values. The distributions used for wave heights, wave periods, and their joint relations
are described next.

P(x)
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(7) Wave height distribution.

(a) The heights of individual waves may be regarded as a stochastic variable represented by a
probability distribution function. From an observed wave record, such a function can be obtained from a
histogram of wave heights normalized with the mean heights in several wave records measured at a point
(Figure II-1-30). Thompson (1977) indicated how well coastal wave records follow the Rayleigh distribution.
If wave energy is concentrated in a very narrow range of wave period, the maxima of the wave profile will
coincide with the wave crests and the minima with the troughs. This is termed a narrow-band condition.
Under the narrow-band condition, wave heights are represented by the following Rayleigh distribution
(Longuet-Higgins 1952, 1975b, 1983)

2H H?
p(H) = — eXp [~ >
Hrms Hrms
i (II-1-130)
2
P(H) =1 - exp|- >
Hrms

(b) The significant wave height H,; is the centroid of the area for H > H. under the density function
where H > H. corresponds to waves in the highest one-third range as shown in Figure II-1-29, that is

B
PH)=1-==1-¢\ m (11-1-131)

1
3

from which we find H. = 1.05H,,,,. Various estimates of wave heights may then be obtained upon integration
of the above equation using certain mathematical properties of the Error function (Abramowitz and Stegun

1965). We find

H,; = 4.00 Jm; = 1.416 H,,
H,, =127 H, =180 H = 5091 /m

1/10 1/3 rms \/70 (11_1_132)
Hyp = 1.67 Hyy = 236 H, = 6.672 \/m,

H_ . =186 H , (for 1000 wave cycles in the record)

(¢) The most probable maximum wave height in a record containing N waves is related to the rms wave
height (Longuet-Higgins 1952) by

oo - | Jlogh - 02886 0247 |, (I1-1-133)
quN (logN)3/2

(d) The value of H,,, obtained in this manner can be projected to a longer period of time by adjusting
the value of N based on the mean zero-upcrossing period (Tucker 1963).
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(e) The factthat the statistics of wave height for wave records in general follows a Rayleigh distribution
is of great significance in coastal engineering. For instance, an engineer may have information from a
hindcast (see Part I1-2) that the significant height for a storm is 10 m. Assuming that the Rayleigh distribution
describes the wave record, the engineer can estimate that the 10-percent wave will be 12.7 m and that the H,,
(assuming 1,000 waves in the record) will be 18.6 m. Often measured ocean wave records are analyzed
spectrally (see “Spectral Analysis” section later in this chapter) by the instrument package and only
condensed information is reported via satellite to a data bank, with no other information retained. The
inherent assumption made is that the Rayleigh distribution is adequate.

(f) Theoretical relationships derived from the Rayleigh distribution generally agree well with the values
determined directly from the records. The Rayleigh probability distribution density function is compared
with a histogram of the measured deepwater wave heights in Figure 11-1-30 (Chakrabarti 1987). Clearly the
Rayleigh distribution fits this data well, even though the frequency spectra of ocean waves may not always
be narrow-banded as assumed in the Rayleigh distribution. Field measurements sometimes deviate from the
Rayleigh distribution, and the deviation appears to increase with increasing wave heights, and decrease as
the wave spectrum becomes sharply peaked. The effect of bandwidth on wave height distribution has been
accounted for theoretically (Tayfun 1983).

(g) Deepwater wave height measurements from different oceans have been found to closely obey a
Rayleigh distribution (Tayfun 1983a,b; Forristall 1984; Myrhaug and Kjeldsen 1986). This is not true for
shallow-water waves, which are strongly modulated by the bathymetric effects combined with the amplitude
nonlinearities. The wave energy spectrum of the shallow-water waves is not narrow-banded and may
substantially deviate from the Rayleigh distribution especially for high frequencies. In general, the Rayleigh
distribution tends to overpredict the larger wave heights in all depths.

(h) In summary, the Rayleigh distribution is generally adequate, except for near-coastal wave records
in which it may overestimate the number of large waves. Investigations of shallow-water wave records from
numerous studies indicate that the distribution deviates from the Rayleigh, and other distributions have been
shown to fit individual observations better (SPM 1984). The primary cause for the deviation is that the large
waves suggested in the Rayleigh distribution break in shallow water. Unfortunately, there is no universally
accepted distribution for waves in shallow water. As a result, the Rayleigh is frequently used with the
knowledge that the large waves are not likely.

(8) Wave period distribution.
(a) Longuet-Higgins (1962) and Bretschneider (1969) derived the wave period distribution function

assuming the wave period squared follows a Rayleigh distribution. This distribution is very similar to the
normal distribution with a mean period given by

T, =2 (I1-1-134)

where the moments are defined in terms of cyclic frequency (i.e., Hertz). The probability density of wave
period 7'is given by (Bretschneider 1969)
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oD = 27 exp [-0.675¢]
T (I-1-135)
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(b) A different probability density distribution of the wave period has been derived by Longuet-Higgins
(1962). This is given by

1
’[ =z  —_—
p( ) 2(1 4 12) 3/2
, (II-1-136)
Tr-T,, mym, — my
T = [ ’ VvV = 72
vl m;

where v is the spectral width parameter and m,, m,, and m, are moments of the wave spectrum, which will
be defined later. This probability density function is symmetric about z = 0 where it is maximum, and is
similar to the normal distribution with a mean equal to 7;,. This distribution fits field measurements
reasonably well, and is often used in offshore design. In general, probability density for the wave period is
narrower than that of wave height, and the spread lies mainly in the range 0.5 to 2.0 times the mean wave
period.

(c) Various characteristic wave periods are related. This relationship may be stated in a general way
as

T =T, =CT (11-1-137)

where the coefficient C varies between 1.1 and 1.3.
(9) Joint distribution of wave heights and periods.

(a) Ifthere were no relation between wave height and wave period, then the joint distribution between
wave height and wave period can simply be obtained from the individual probability distributions of the
height and period by

p(H,T) = p(H) p(T) (I1-1-138)

(b) Thedistribution p(H,T) so obtained is inappropriate for ocean waves, since their heights and periods
are correlated. For the joint distribution of wave height-period pairs, Longuet-Higgins (1975b) considered
wave heights and periods also representable by a narrow-band spectrum. He derived the joint distribution
assuming wave heights and periods are correlated, a more suitable assumption for real sea states.

(¢) Theprobability density function of wave period may be obtained directly from the joint distribution,
provided that a measure of the spectrum width is included in the latter. Under this condition, the distribution
of wave period is simply the marginal probability density function of the joint distribution of H and 7. This
is done by integrating p(H, T) for the full range of H from 0 to . Likewise, the distribution for wave heights
may be obtained by integrating p(H,T) for the full range of periods. The joint distribution derived by
Longuet-Higgins (1975b) was later modified (Longuet-Higgins 1983), and is given by
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pi7) - 2L [—) exp|- - 1+ ——-
4 ] N
(I-1-139)
2
g-2 . - . gy-20V)
H Tz Vv + v
1+

with v as the spectral width parameter. The period 7, is the mean zero-upcrossing period and its relation to
the mean wave period T and mean crest period 7, defined in terms of moments of spectrum is as follows:

T, =2n |— ;
m,
(11-1-140)
— m — m
T =22 ; T, =2n 2
m m,
(d) The most probable maximum period associated with any given H. is
2
e 2yl vy (I1-1-141)
L+ |1+ 16v*
an

(¢) Chakrabartiand Cooley (1977) investigated the applicability of the joint distribution and determined
that it fits field data provided the spectrum is narrow-banded and has a single peak. A different theoretical
model has been suggested by Cavanie et al. (1978), and it also compares well with the field data.

c.  Spectral analysis.
(1) Introduction.

(a) In the period 1950-1960, Rice’s (1944-1945) work on signal processing was extended to ocean
waves (Kinsman 1965; Phillips 1977). In pinciple, the time-history of surface elevation (such as in Figures II-
1-31 and II-1-32) was recognized to be similar to a noise record. By assuming that it is a discrete sample of
a continuous process, the principles of Fourier analysis could be extended to describe the record. The power
of Fourier representation is such that given a series of time snapshots of measurements of a three-dimensional
surface, a full mathematical representation of the surface and its history may be obtained. Unfortunately, this
is a lot of information. As an example, the image in Figure 1I-1-22 of the entrance to San Francisco Bay is
one snapshot of the surface current field and represents nearly 1 million sample points. To understand the
time variation of the field it would be reasonable to do this every 2 sec or so for an hour. The result is about
1.8 billion sample points that would need to be Fourier transformed. Although, this is computationally
feasible such a measurement cannot be made on a routine basis and it is not clear how the information could
be condensed into a form for practical engineering. However, the utility of the spectral analysis approach is
that it uses a reduced dimensional approach that is powerful and useful. This section will discuss the
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underlying approach to using spectral representations in engineering, discuss the basic approach for the
simplified spectral approaches, and describe how the spectral information can be used. However, the
underlying statistical theory and assumptions will only be touched upon and details of the derivations will
only be referenced.

(b) The easiest place to begin is with a nonrigorous discussion of what a spectral analysis of a single-
point measurement of the surface can produce and then generalize it to the case of a sea surface. The
following sections would then describe of the procedure.

(¢) Considering a single-point time-history of surface elevation such as in Figures I1-1-25, [1-1-31, and
II-1-32, spectral analysis proceeds from viewing the record as the variation of the surface from the mean and
recognizes that this variation consists of several periodicities. In contrast to the wave-by-wave approach,
which seeks to define individual waves, the spectral analysis seeks to describe the distribution of the variance
with respect to the frequency of the signal. By convention, the distribution of the variance with frequency
is written as E(f) or S(f) with the underlying assumption that the function is continuous in frequency space.
The reason for this assumption is that all observations are discretely sampled in time, and thus, the analysis
should produce estimates as discrete frequencies which are then statistically smoothed to estimate a
continuum. Although E(f) is actually a measurement of variance, it is often called the one-dimensional or
frequency energy spectrum because (assuming linear wave theory) the energy of the wave field may be
estimated by multiplying E(f) by pg.

(d) FiguresII-1-31 (aregular wave) and II-1-32 (an irregular wave) provide two wave records and their
spectrum. One immediate value of the spectral approach is that it tells the engineer what frequencies have
significant energy content and thus acts somewhat analogous to the height-period diagram. The primary
disadvantage of spectral analysis is that information on individual waves is lost. If a specific record is
analyzed, it is possible to retain information about the phases of the record (derived by the analysis), which
allows reconstruction of waves. But this is not routinely done.

(e) The surface can be envisioned not as individual waves but as a three-dimensional surface, which
represents a displacement from the mean and the variance to be periodic in time and space. The simplest
spectral representation is to consider £(f,6), which represents how the variance is distributed in frequency f
and direction 4 (Figure I1-1-33). E(f,6) is called the 2-D or directional energy spectrum because it can be
multiplied by pg to obtain wave energy. The advantage of this representation is that it tells the engineer about
the direction in which the wave energy is moving. A directional spectrum is displayed in Figure II-1-34 with
its frequency and direction spectrums.

(f) The power of spectral analysis of waves comes from three major factors. First, the approach is
easily implemented on a microchip and packaged with the gauging instrument. Second, the principal
successful theories for describing wave generation by the wind and for modelling the evolution of naturalsea
states in coastal regions are based on spectral theory. Third, it is currently the only widely used approach for
measuring wave direction. A final factor is that Fourier or spectral analysis of wave-like phenomena has an
enormous technical literature and statistical basis that can be readily drawn upon.
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Figure 1I-1-31. Surface elevation time series of a regular wave and its spectrum
(Briggs et al. 1993)

(g) Before proceeding to the details of how a wave spectrum is derived from a record, it is important
to touch upon some statistical assumptions that are important in analyzing a wave record spectrally. Many
of these assumptions also hold for making a wave-by-wave analysis useful as well. First of all, wave records
are finite in length (typically 17-68 min long) and are made up of samples of surface elevation at a discrete
sampling interval (typically 0.5-2.0 sec). For the wave records to be of general use, the general characteristics
of the record should not be expected to change much if the record was a little shorter or longer, if the
sampling was started some fraction of time earlier or later, or if the records were collected a short distance
away. In addition, it is desirable that there not be any underlying trend in the data.

(h) Ifthe above assumptions are not reasonably valid, it implies that the underlying process is unstable
and may not be characterized by a simple statistical approach. Fortunately, most of the time in ocean and
coastal areas, the underlying processes are not changing too fast and these assumptions reasonably hold. In
principal the statistical goal is to assume that there is some underlying statistical process for which we have
obtained an observation. The observation is processed in such a way that the statistics of the underlying
process are obtained.
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Figure 1I-1-32. Surface elevation time series of an irregular wave and its spectrum (Briggs et al.
1993)

(2) Description of wave spectral analysis.

(a) Unlike the wave train or wave-by-wave analysis, the spectral analysis method determines the
distribution of wave energy and average statistics for each wave frequency by converting time series of the
wave record into a wave spectrum. This is essentially a transformation from time-domain to the frequency-
domain, and is accomplished most conveniently using a mathematical tool known as the Fast Fourier
Transform (FFT) technique (Cooley and Tukey 1965). Here we will treat analysis of the time recording ofthe
surface at a point, in order to obtain a frequency spectrum of the record. In a later section, we will describe
how to obtain a frequency-directional spectrum.

(b) The wave energy spectral density E(f) or simply the wave spectrum may be obtained directly from
a continuous time series of the surface 7(z) with the aid of the Fourier analysis. Using a Fourier analysis, the
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Figure 11-1-33. A schematic for a two-dimensional wave spectrum E(f,0)

wave profile time trace can be written as an infinite sum of sinusoids of amplitude 4,, frequency w, , and
relative phase ¢,, that is

n’

n@ = Z A4, cos (ot - €,)
n-0 (I1-1-142)

=Y a, cos not + b sin not
n=0

(c) Thecoefficients a, and b, in the above equation may be determined explicitly from the orthogonality
properties of circular functions. Note that a, is the mean of the record. Because real observations are of finite
length, the finite Fourier transform is used and the number of terms in the sum # is a finite value.

(d) The covariance of 5(t) is related to the wave energy spectrum. This is defined in terms of the
squares of component amplitudes as
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Figure lI-1-34. A directional spectrum and its frequency and direction spectrum
(Briggs et al 1993)

) = Y A% Af
0

1
A = : a’+h’ (11-1-143)
4 b,
g, = tan —
aﬂ
(e) By induction, an estimate of the continued energy spectrum of #(?) may be obtained by
1|y ’
E(f) = — | Y. n(nAp) 2™ /@80 Ay (I1-1-144)

» Ln=0

where T is the record length and At is the sampling interval.
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(f) There are numerous intricacies involved in the application of these discrete formulas, ranging from
the length of time series necessary to digitizing frequency and many others. For unfamiliar users, most
computer library systems now have FFT (Finite Fourier Transform) algorithms available to perform the
above computations. Part VII-3 of the CEM provides a discussion of the methods. Some general guidelines
are provided next.

(g) Inactual practice, the total data length is divided into M smaller segments with equal number of data
points N. By letting N be a power of 2 for computational efficiency, the result then is averaged over the M
sections. In an FFT, the variables M, N, and 4t have to be independently selected, though 7, and At are fixed
for a given record so that the total number of data points can be obtained from these values. Therefore, the
only choice that has to be made is the number of sections M. Traditionally, the most common values of N
used range from 512 to 2,048, while the value of M is usually & or greater. Since 7 is dependent on N, M,
and At as T, = M N At, then higher N and M values in general yield better resolution and high confidence in
the estimate of spectra. The larger the N, the more spiky or irregular the spectrum, and the smaller the &, the
smoother the spectrum (Cooley and Tukey 1965; Chakrabarti 1987).

(h) To better understand the wave spectrum by the FFT method, consider first the wave surface profile
of a single-amplitude and frequency wave given by a sinusoidal function as

N = a sin ot (I1-1-145)

where a and w are the amplitude and frequency of the sine wave. The variance of this wave over the wave
period of 27 is

& = MOP = - [ a? sin 2aft d(af
2w Jo

(11-1-146)
2

a ® ol ®© 2
=— =2 E(f) df = E“(f) 4
5 fo () df f _EW df

(i) Thus the quantity a’/2 represents the contribution to the variance o associated with the component
frequency w = 2zf(Figure II-1-35). The connection between the variance, wave energy, and the wave energy
spectrum is now more obvious since these all are proportional to the wave amplitude (or height) squared. For

consistency of units, an equality between these quantities requires that the wave spectrum not include the pg
term.

() The difference between a two-sided spectrum E” and a one-sided spectrum E' as illustrated in Figure
II-1-36 is quite important. Note that the two-sided spectrum is symmetric about the origin, covering both
negative and positive frequencies to account for all wave energy from - to +e. But, it is customary in ocean
engineering to present the spectrum as a one-sided spectrum. This requires that the spectral density ordinates
of E” be doubled in value if only the positive frequencies are considered. This is the reason for introducing
a factor of two in Equation II-1-146. This definition will be used subsequently throughout Part II-1; thus,
it is henceforth understood that E(f) refers to £’ (Figures I1I-1-35 and I1-1-36).

(k) By an intuitive extension of this simple wave, the variance of a random signal with zero mean may

be considered to be made up of contributions with all possible frequencies. For a random signal using the
above equations, we find
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Figure 1I-1-35. Sketches of wave spectral energy and energy density
(Chakrabarti 1987)
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= | E(f) df = 11-1-147
5 { ) df mg ( )

where m, is the zero-th moment of the spectrum. Physically, m, represents the area under the curve of E(f).
The area under the spectral density represents the variance of a random signal whether the one-sided or two-
sided spectrum is used.

(I) The moments of a spectrum can be obtained by

m, = fff E@) df i=0]12,. (II-1-148)
0

(m) We now use the above definition of the variance of a random signal to provide a third definition of
the significant wave height. As stated earlier, this gives an estimate of the significant wave height by the
wave spectrum. For Rayleigh distributed wave heights, H, may be approximated (Longuet-Higgins 1952)

by
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Figure 1I-1-36. Definition of one- and two-side wave spectrum (Chakrabarti 1987)

H, =38 [m; = 4 [m, (II-1-149)

(n) Therefore, the zero-th moment m,, which is the total area under the wave energy density spectrum,
defines the significant wave height for a given E(f) (Figure 11-1-37).

(3) Examples of frequency spectra. The frequency spectrum is normally plotted as energy density on
the ordinate versus frequency on the abscissa (Figures [I-1-31 through I1-1-37). In principal, the form of E(f)
can be quite variable. However, some generalizations are possible. First of all, during strong wind events,
the spectrum tends to have a strong central peak and a fairly predictable shape. For swell that has propagated
a long distance from the source of generation, waves tend to have a single sharp peak. Waves in shallow
water near breaking tend to have a sharp peak at the peak frequency f, and have a series of smaller peaks at
frequencies 2 f,, 3 f,, etc., which are harmonics of the main wave. The presence of harmonics indicates that
the wave has the sharp crest and flat trough of highly nonsinusoidal waves often found near breaking. To
complicate matters, Thompson (1977) has shown that about two-thirds of U.S. coastal wave records have
more than one peak, indicating the presence of multiple wave trains. These wave trains most likely originated
from different areas and have different directions of propagation. Moreover, it is possible to have a single-
peak spectrum, which consists of two trains of waves of about the same frequency but different directions of
propagation. In order to sort these issues out, observations of the directional spectrum are required. Figures
II-1-31, 1I-1-32, and II-1-35 include examples of different frequency spectra providing some indication of
their range of variability.

(4) Wave spectrum and its parameters.
(a) Two parameters are frequently used in the probability distribution for waves. These are the spectral

width v and the spectral bandwidth ¢, and are used to determine the narrowness of a wave spectra. These
parameters range from 0 to 1, and may be approximated in terms of spectral moments by
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Figure 11-1-37. Energy density and frequency relationship (Chakrabarti 1987)
v = | T
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mz
€= |1 2
\ mgn,

(I1-1-150)

(b) For anarrow-band spectrum, both v and & must be close to 0 (Figure 1I-1-38). For example, for the
two most common empirical spectra, the Pierson-Moskowitz (PM) spectrum (Pierson and Moskowitz 1964)
and the JONSWAP spectrum (Hasselmann et al. 1973), which are discussed in the next section, v=0.425 and
0.389, respectively, with e = 1 for both. Natural ocean waves, therefore, have a broad-banded spectrum.

(c) The values of ¢ obtained from a wave energy spectrum are generally not considered as the sole
indication of how broad the spectra are. This is due to the amplification of the noise present in the wave
energy spectral density at higher frequencies that enters into the calculation of the higher moments m, and
m, in the above equation for . Goda (1974) proposed a spectral peakedness parameter called Q, defined as
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p 2
my o

which depends only on the first moment of the energy density spectrum, and is not directly related to . In
general, a small ¢ implies that ), is large, and a large ¢ means Q, is small.

(d) Approximate relations for most common wave parameters by the statistical analysis are

Hg =40 /my 5 Hp, =51 /m,

el

m, m, (II-1-152)
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(e) Indeep and intermediate water depths, the significant wave height obtained by the spectral analysis
using the above equation is usually greater than that from the wave train analysis. The zero-crossing period
from the spectral method is only an approximation, while the period associated with the largest wave energy
known as the peak period T,, can only be obtained via the spectral analysis. In the spectral representation
of swell waves, there is a single value of the peak period and wave energy decays at frequencies to either side.
The spectra for storm waves is sometimes multi-peaked. One peak (not always the highest) corresponds to
the swell occurring at lower frequencies. One and sometimes more peaks are associated with storm waves
occurring at comparatively higher frequencies. Ina double-peaked spectra for storm waves, the zero-crossing
period generally occurs at higher frequencies than the peak period. In a multi-peaked spectrum, the zero-
crossing period is not a measure of the frequency where peak energy occurs.

(5) Relationships among H, ;, H,, and H,, in shallow water.

(a) By conception, significant height is the average height of the third-highest waves in a record of time
period. By tradition, wave height is defined as the distance from crest to trough. Significant wave height H
can be estimated from a wave-by-wave analysis in which case it is denoted H, ;, but more often is estimated
from the variance of the record or the integral of the variance in the spectrum in which case it is denoted H,,,.
Therefore, H in Equation II-1-152 should be replaced with H,,, when the latter definition of H; is implied.
While H, ; is a direct measure of H,, H,, is only an estimate of the significant wave height which under many
circumstances is accurate. In general in deep water H,,; and H,, are very close in value and are both
considered good estimates of H,. All modern wave forecast models predict H,, and the standard output of
most wave gauge records is H,,. Few routine field gauging programs actually compute and report H, ; and
report as H, with no indication of how it was derived. Where H,; and H, are equivalent, this is of little
concern.

(b) Thompson and Vincent (1985) investigated how H,,; and H,, vary in very shallow water near
breaking. They found that the ratio H,,/H,,, varied systematically across the surf zone, approaching a
maximum near breaking. Thompson and Vincent displayed the results in terms of a nomogram (Figure II-1-
40). For steep waves, H,;/H,,, increased from 1 to about 1.1, then decreased to less than 1 after breaking.
For low steepness waves, the ratio increased from 1 before breaking to as much as 1.3-1.4 at breaking, then
decreased afterwards. Thompson and Vincent explained this systematic variation in the following way. As
low steepness waves shoal prior to breaking, the wave shape systematically changes from being near
sinusoidal to a wave shape that has a very flat trough with a very pronounced crest. Although the shape of
the wave is significantly different from the sine wave in shallow water, the variance of the surface elevation
is about the same, it is just arranged over the wave length differently from a sine wave. After breaking, the
wave is more like a bore, and as a result the H, ; can be smaller (by about 10 percent) than H,,.

(¢) The critical importance of this research is in interpreting wave data near the surf zone. It is of
fundamental importance for the engineer to understand what estimate of significant height he is using and
what estimate is needed. As an example, if the data from a gauge is actually H,, and the waves are near
breaking, the proper estimate of H, is given by H,;. Given the steepness and relative depth, H,; may be
estimated from H,_, by Figure I1I-1-40. Numerically modelled waves near the surf zone are frequently
equivalent to H,,. In this case, H, will be closer to H, ; and the nomogram should be used to estimate H..

(6) Parametric spectrum models.

(a) In general, the spectrum of the sea surface does not follow any specific mathematical form.
However, under certain wind conditions the spectrum does have a specific shape. A series of empirical
expressions have been found which can be fit to the spectrum of the sea surface elevation. These are called
parametric spectrum models, and are useful for routine engineering applications. A brief description of these
follows.
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(b) There are many forms of wave energy spectra used in practice, which are based on one or more
parameters such as wind speed, significant wave height, wave period, shape factors, etc. Phillips (1958)
developed an equation for the equilibrium range of the spectrum for a fully-developed sea in deep water,
which became the basis of most subsequent developments. Phillips’ equilibrium range is often written in
terms of the angular frequency w and is of the form

E(®) = og’n?® (11-1-153)
where a is the Phillips’ constant (= .0081) and g the gravitational acceleration.

(c) One commonly used spectrum in wave hindcasting and forecasting projects is the single-parameter
spectrum of Pierson-Moskowitz PM (Pierson and Moskowitz 1964). An extension of the PM spectrum is the
JONSWAP spectrum (Hasselmann et al. 1973, 1976); this is a five-parameter spectrum, although three of
these parameters are usually held constant. The relationship between PM and JONSWAP spectra is shown
in Figure II-1-38. Other commonly used two-parameter wave spectra forms, including those proposed by
Bretschneider (1959), ISSC (1964), Scott (1965), ITTC (1966), Liu(1971), Mitsuyasu (1972), Goda (1985a),
and Bouws et al. (1985) are essentially derivatives of the PM and JONSWAP spectra. A six-parameter wave
spectrum has been developed by Ochi and Hubble (1976). The utility of this spectrum is that it is capable
of describing multi-peaks in the energy spectrum in a sea state mixed with swell (Figure 1I-1-39). Only the
parametric wave spectra forms most often used in coastal engineering will be briefly discussed here.

(d) The equilibrium form of the PM spectrum for fully-developed seas may be expressed in terms of
wave frequency fand wind speed U,, as

U, f|*
g

0.0081g2

E(H =
0 @2n)* /3

(1I-1-154)

exp[ -0.24

where U, is the wind speed at 19.5 m above mean sea level. The PM spectrum describes a fully-developed
sea with one parameter, the wind speed, and assumes that both the fetch and duration are infinite. This
idealization is justified when wind blows over a large area at a constant speed without substantial change in
its direction for tens of hours.

(e) The JONSWAP spectrum for fetch-limited seas was obtained from the Joint North Sea Wave
Project - JONSWAP (Hasselmann et al. 1973) and may be expressed as

3]

|
EN
'

2 exp
E(f) = % exp 1.25(%] Y 2
@2n)* f ») | (II-1-155)
2033 I -0.22
| A LIt R P
UlO _UIO

c = 0.07 fOl’ij; and o = 0.09 forf>j;
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Figure 11-1-39. Definition sketch for Ochi-Hubble spectrum (Ochi and Hubble 1976)

(f) In this equation, « is the scaling parameter, y the peak enhancement factor, £, the frequency at the
spectral peak, U,, the wind speed at the elevation 10 m above the sea surface, F the fetch length. Figure I1-1-
38 qualitatively illustrates the relationship between JONSWAP and PM spectra. The JONSWAP spectrum
can also be fitted mathematically to observed spectra by iteratively solving for d, v, f, , and c.

(g) A six-parameter spectrum developed by Ochi and Hubble (1976) is the only wave spectrum which
exhibits two peaks (Figure 11-1-39), one associated with underlying swell (lower frequency components) and
the other with locally generated waves (higher frequency components). It is defined as

A
4% . 1m4 j 2 4
o H 4ki+1 Oy
4 ®

1 22: ( 4 s

4 5 () o]
where H,, w,;, and 4, are the significant wave height, modal frequency, and shape factor for the lower-
frequency components while H,, w,,, and 4, correspond to the higher frequency components (Figure 11-1-39).
The value of 4, is usually much higher than 4,. For the most probable value of ®,,, it can be shown that 4,
= 2.72, while 4, is related to H, in feet as

E(o) = (11-1-156)

exp

(-0.027H,)

A =182 e (11-1-157)
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Figure 1I-1-40. Variation of H/H,,, as a function of relative depth d and significant
steepness (Thompson and Vincent 1985)

(h) The parameters 4; control the shape and the sharpness of the spectral peak of the Ochi-Hubble
spectral model if in either spectral component (i.e., sea or swell) the values of H; and w,; are held constant.
Therefore, 4, and 4, are called the spectral shape parameters. On the assumption of a narrow-bandedness
of the entire Ochi-Hubble spectrum, an equivalent significant wave height may be calculated by

H, = {H} + H} (II-1-158)

Note that for 4, = 1 and 4, = 0, the PM spectra may be recovered from this equation.

(i) Inshallow water, the wave spectrum deviates from the standard spectra forms presented so far, and
at frequencies above the peak, the spectrum no longer decays as /°. Kitaigorodoskii et al. (1975) showed that
the equilibrium range is proportional to -3 power of the wave number, and thus, the form of the spectrum is
of 7 in the high-frequency range. This change is attributed to the effect of water depth on wave spectrum
and to the interaction between spectral components. Bouws et al. (1984) proposed a variation to the
JONSWAP energy spectrum for representing wave spectra in finite-depth water. The spectrum so obtained,
the product of JONSWAP and the Kitaigorodoskii depth function accounting for the influence of the water
depth, is called the TMA spectrum after the names of three sources of data used in its development (Texel,
Marsen, and Arsloe).
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(j) Kitaigorodoskii et al. (1975) obtained the form of depth dependence as

[k@
ow )
O(0,d) = ———d-finite g (11-1-159)
k'3%
ow |, _,

(k) Thus, @ is a weighing factor of the quantity in the bracket, which is determined from the ratio of
the quantity evaluated for finite and infinite water depth cases. Using the linear wave theory, the above
equation has been approximated by Kitaigorodoskii et. al. (1975) as

—® for o < 1
O(0,d) = (I11-1-160)

175(2703)2 for © > 1

(1) The TMA spectrum was intended for wave hindcasting and forecasting in water of finite depth. This
spectrum is a modification of the JONSWAP spectrum simply by substituting Kitaigorodoskii’s expression
for effects of the finite depth equilibrium function 1By using the linear wave theory, we find the following
complete form of the TMA spectrum:

Srua(@.d) = S jonsmap(®) P(0".d)

Do'd) = —— | 1 + — N K (I1-1-161)
Aw®) sinh K g
flw") = tanh [k(0)d] ; K =207 flo)

(m) In effect, this substitution transforms the decay or slope of the spectral density function of the
JONSWAP spectrum in the high-frequency side from ™ to w™ type dependence during the shoaling process
approximated by linear wave theory. Bouws et. al (1984) present equations for o, y, and 6. As with the
JONSWAP, the equation may be iteratively fit to an observed spectrum and a, v, f,, , and o may be estimated.

(n) The PM,JONSWAP, and TMA spectra can be estimated if something about the wind, depth and fetch
are known. Furthermore, these spectral equations can be used as target spectra whose parameters can be
varied to fit observed spectra which may have been measured. In the first situation, the value of the
parameterization is in making an educated guess at what the spectrum may have looked like. The value in
the second case is for ease of analytical representation. However, very often today engineering analyses are
made on the basis of numerical simulations of a specific event by use of a numerical model (see Part 11-2).
In this case, the model estimates the spectrum and a parametric form is not required.
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(7) Directional spectra.

(a) The wave spectra described so far have been one-dimensional frequency spectra. Wave direction
does not appear in these representations, and thus variation of wave energy with wave direction was not
considered. However, the sea surface is often composed of many waves coming from different directions.
In addition to wave frequency, the mathematical form of the sea state spectrum corresponding to this situation
should therefore include the wave direction 8. Each wave frequency may then consist of waves from different
directions 6. The wave spectra so obtained are two-dimensional, and are denoted by E(f,6). Figures I11-1-33
and I1-1-34 display directional spectra.

(b) Measurement of a directional spectrum typically involves measurement of either the same
hydrodynamic parameter (such as surface elevation or pressure) at a series of nearby locations (within one
to tens of meters) or different parameters (such as pressure and two components of horizontal velocity) at the
same point. These records are then cross-correlated through a cross-spectral analysis and a directional
spectrum is estimated. In general, the more parameters or more locations involved, the higher the quality of
the directional spectrum obtained. The procedures for converting measurements into estimates of the
directional spectrum are outside the scope of this chapter. Part VII-3 of the CEM and Dean and Dalrymple
(1991) provide some additional details on this subject.

(c) The major systems routinely employed at the present time for measuring directional spectra include
directional buoys, arrays of pressure or velocity gauges, and the p-U-V technique. With directional buoys,
pitch-roll-and-heave or heave-and-tilt methods are used. Most directional buoys are emplaced in deeper
water. Arrays of pressure gauges or velocity gauges arranged in a variety of shapes (linear, cross, star,
pentagon, triangle, rectangle, etc.) are also used, but these are usually restricted to shallower water. The p-U-
V technique uses a pressure gauge and a horizontal component current meter almost co-located to measure
the wave field. This can be used in shallow or in deeper water if there is something to attach it to near the
surface. Other techniques include arrays of surface-piercing wires, triaxial current meters, acoustic doppler
current meters, and radars.

(d) A mathematical description of the directional sea "state is feasible by assuming that the sea state can
be considered as a superposition of a large number of regular sinusoidal wave components with different
frequencies and directions. With this assumption, the representation of a spectrum in frequency and direction
becomes a direct extension of the frequency spectrum alone, allowing the use of FFT method. It is often
convenient to express the wave spectrum E(F,0) describing the angular distribution of wave energy at
respective frequencies by

E(,0) = E(f) G(1.9) (I1-1-162)
where the function G(f,0) is a dimensionless quantity, and is known as the directional spreading function.

Other acronyms for G(f,6) are the spreading function, angular distribution function, and the directional
distribution.

(¢) The one-dimensional spectra may be obtained by integrating the associated directional spectra over
0 as

E(f) = f E(£,0) db (II-1-163)
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(f) It therefore follows from the above last two equations that G(f,6) must satisfy
f " G(f0) do = 1 (II-1-164)

(g) The functional form of G(f,68) has no universal shape and several proposed formulas are available.
In the most convenient simplification of G(f,6), it is customary to consider G to be independent of frequency
fsuch that we have

G = = cos’® for [0] < 90° (11-1-165)
T

(h) This cosine-squared distribution is due to St. Denis and Pierson (1953), and testing with field data
shows that it reproduces the directional distribution of wave energy. Longuet-Higgins (1962) found the
cosine-power form

0 -6
2

G(©) = C(s) cos®

o - i) (11-1-166)

2n 1

I'ls + =

2
where 6 is the principal (central) direction for the spectrum, s is a controlling parameter for the angular
distribution that determines the peakedness of the directional spreading, C(s) is a constant satisfying the

normalization condition, @ is a counterclockwise measured angle from the principal wave direction, and /"
is the Gamma function.

(i) Mitsuyasu et al. (1975), Goda and Suzuki (1976), and Holthuijsen (1983) have shown that for wind
waves, the parameter s varies with wave frequency and is related to the stage of wave development (i.e., wind
speed and fetch) by

5
s (l] forf<f,
7
. (11-1-167)

( 1) = s,

where s,,,, and f, are defined as

25
2nf U

S = 11.5 J;
4

(II-1-168)

2nf U -0.33

WY s (&
g U?

(j) Inthe above equations, U is the wind speed at the 10-m elevation above the sea surface and F'is the
fetch length. These equations remain to be validated with field data for wind waves. The parameter s for
shallow-water waves may also vary spatially during wave transformation. This is due to refraction. A large
value greater that 50, may be necessary if dependence of s,,,. on refraction is of concern. For deepwater
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applications where wind waves are jointly present with swells in deep water, Goda and Suzuki (1976)
proposed the following values for s,,,.: 10 for wind waves, and 25 for swells present with wind waves of
relatively large steepness, and 75 for swells with wind waves of small steepness. Under simple wind wave
conditions, the spreading function may be approximated by the equations provided. They are typical of
deepwater wind seas for which the wind has been constant. If the wind has shifted in direction, if there is
significant swell, or if the waves are in shallow water, the directional distribution may be different than the
shape functions presented.

(8) Wave groups and groupiness factors.

(a) Measurements of waves usually show a tendency of grouping between waves that is; high waves;
often seem to be grouped together. Examination of the sea surface profile records indicates that wave heights
are not uniform and they occur in successive groups of higher or lower waves. The interest in wave groups
is stimulated by the fact that wave grouping and associated nonlinear effects play an important role in the
long-period oscillation of moored vessels (Demirbilek 1988, 1989; Faltinsen and Demirbilek 1989), surf
beats, irregular wave runup, resonant interaction between structures (Demirbilek and Halvorsen 1985;
Demirbilek, Moe, and Yttervoil 1987;), and other irregular fluctuations of the mean water level nearshore
(Goda 1985b; 1987). Unfortunately there is no way to predict grouping.

(b) Wave grouping is an important research topic and there are several ways to quantify wave grouping.
These include the smoothed instantanecous wave energy history analysis (Funke and Mansard 1980), the
concept of the run of wave heights (Goda 1976), and the Hilbert transform. A short exposition of the wave
grouping analysis is provided here.

(¢) The length of wave grouping can be described by counting the number of waves exceeding a
specified value of the wave height which could be the significant, mean, or other wave height. The
succession of high wave heights is called a run or a run length with an associated wave number j,. The
definition sketch for two wave groups is shown in Figure II-1-41 with the threshold wave height limit set at
H = H,. The recurrence interval or repetition length above the threshold value of wave height is called the
total run denoted by j,.

(d) The group occurrence for N waves with £ number of lags between waves in a sequence in a record
may be defined in terms of a correlation coefficient. The correlation coefficient R, so defined will describe
the correlation between wave heights as a function of the mean u and standard deviation ¢ and is given by

1 1 N-k
Ry =— = (H, - wW)(H,,, ~ 1)
- i=1
‘ (11-1-169)
1 i >
c, = — H. -
S (H, - p)

(¢) Thus, R, varies with the number of lags k£ between waves. Ifthe succeeding waves are uncorrelated,
then R, — 0 as N — « Real wave data indicate that R,(1) = 0.20 to 0.40 while R,(k) = 0 for k > 1.
Furthermore, a positive value of R, suggests that large waves tend to be succeeded by large waves, and small
waves by other small waves.
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Figure lI-1-41. Identification and description of wave groups through
ordered statistics (Goda 1976)

(f) Assuming that successive wave heights are uncorrelated, the probability of ¢ run length j, is (Goda
1976)

PGy =p" " (1-p) (1I-1-170)

in which p is the occurrence probability for H > H,. The mean and standard deviation of j, are

1
Mj] ;
(II-1-171)
p = p(H>H)) = exp

1o : _
8 nc :| 4 nc
(g) The probability of a fotal run with the length j, can be derived by mathematical induction as

L s |24

W, =

2

(11-1-172)

< -

where it has been assumed that successive wave heights are uncorrelated. Successive wave heights of the real
ocean waves are mutually correlated, and the degree of correlation depends on the sharpness of the spectral
peak. The effect of spectral bandwidth on wave height distribution has been considered by Kimura (1980),
Tayfun (1983a), and Longuet-Higgins (1984). Tayfun has shown that the parameter that best describes the
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spectral peakedness is the correlation coefficient of the wave envelope, relating wave height variation
between successive wave heights. This coefficient R, may be calculated as (Tayfun 1983)

oy K& o=
. _EO») (1-1%) 5 2
HH ~— T
Ty
~ (11-1-173)
MD) = - a7+ B?
m,
A =

wa(f)cos?.an_"df ; B:f“’E(/)sinznffdf
0 0

(h) By further assuming that Rayleigh distribution is suitable for the consecutive wave heights, the joint
probability density function p(H,, H,) for two successive wave heights H, and H, in the wave group may then
be established. See Tayfun (1983) for details.

(i) The correlation coefficient R, takes a value of about 0.2 for wind waves and 0.6 or greater for
swells (Goda 1976), a clear indication that wind waves rarely develop significant grouping of high waves.
Su (1984) has shown that the wave group containing the highest wave in a record is often longer than the
ordinary groups of high waves, and that the extreme wave usually consists of three high waves with the
highest greater than the significant wave height. Wave groups and their characteristics have been investigated
by analyzing the successive wave groups (Goda 1976 and Kimura 1980).

(j) Wave grouping and its consequences are of significant concern, but there is little guidance and few
practical formulae for use in practical engineering. The engineer needs to be aware of its existence and, for
designs that would be sensitive to grouping-related phenomena, attempt to evaluate its importance to the
problem of concern. This may involve performing numerical simulations or physical model simulations in
which a wide variety of wave conditions are tested and are designed to include those with high levels of
groupiness. The procedures for this lie beyond the scope of the CEM.

(9) Random wave simulation.

(a) Given a one-dimensional parametric spectrum model or an actual wave energy density spectrum,
it is sometimes necessary to use these quantities to calculate the height, period, and phase angle of a wave
at a particular frequency. Such an approach for simulating random waves from a known wave spectra is
sometimes termed the deterministic spectral amplitude method, since individual wave components in this
superposition method are deterministic (Borgman 1967). The method is also called the random phase method
because the phases of individual components are randomly chosen (Borgman 1969). Random waves
simulated by this approach may not satisfy the condition of a Gaussian sea unless N - « in the limit. In
practice, for 200 < N < 1200 components, the spectrum can be duplicated accurately.

(b) The wave profile generated by simulation methods is used in a number of engineering applications
in spite of requiring a large number of components and considerable computer time. For example, random
wave simulation is frequently used during modeling studies in a wave tank for duplicating a required target
wave energy density spectrum. Random wave profiles are also extensively used in numerical models for
calculating structural loads and responses due to a random sea. The simulation method permits direct
prediction of the wave particle kinematics at any location in a specified water depth for given wave height-
period pair and random phase angle. The ARMA algorithms (Spanos 1983) and digital simulation methods
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(Hudspeth and Chen 1979) are two alternatives for simulating random waves from a given one-dimensional
spectrum.

(¢) There are two ways for simulating wave surface profiles from known wave spectra; deterministic
and non-deterministic spectral amplitude methods. Inthe deterministic spectral simulation method, the wave
height, period, and phase angle associated with a frequency f; whose corresponding energy density is E(f;)
may be obtained from

H(f)) = H, =2 2B() &

() = T, - % (II-1-174)
1

e(f) = 8]f1 = 2mry,

where the phase angle ¢ is arbitrary since r, is a random number between zero and one. The time series of
the wave profile at a point x and time ¢ may be computed by (Tucker et al. 1984)

N
nGt) = Y, H(n) cos [k(n)x - 2nf(n)t + &(n)] (II-1-175)

n=1

where k(n) = 2n/L(n), and L(n) is the wavelength corresponding to the n™ frequency f{n); N the total number
of frequency bands of width Af. It is not required to divide the spectrum curve equally, except that doing so
greatly facilitates computations. The value of wave height is sensitive to the choice of Af, but as long as Af'
is small, this method produces a satisfactory random wave profile. The use of the equal increments, Af,
requires N to be greater than 50 to assure randomness and duplicating the spectrum accurately.

(d) Inthenon-deterministic spectral amplitude method, the wave surface profile is represented in terms
of two independent Fourier coefficients. These Gaussian distributed random variables a, and b, with zero
mean and variance of E(f) Af are then obtained from

NGt = f: a, cos [k(n)x - 2mf(n)t]
n-l (I1-1-176)

N
+ Y b, sin [k(m)x - 2mf(n){]
n=1

(e) Inessence, an amplitude and a phase for individual components are replaced by two amplitudes, the
coefficients of cosine and sine terms in the wave profile. This random coefficient scheme may yield a
realistic representation of a Gaussian sea, provided that N is large for a true random sea. This method differs
from the deterministic spectral amplitude approach by ensuring that sea state is Gaussian. Elgar et al. (1985)
have considered simultaneous simulation of both narrow and broad-banded spectra using more than 1000
Fourier components, and concluded that both simulation methods yield similar statistics. These approaches
may be extended to the two-dimensional case. This is beyond the scope of the CEM.

(10) Kinematics and dynamics of irregular waves. In the above sections of the CEM we have considered
definition of irregular wave parameters and development of methods to measure them and use them
analytically. Velocities, pressures, accelerations, and forces under irregular waves are estimated analytically
in three ways. In the first, an individual wave is measured by either a wave-by-wave analysis or constructed
synthetically (such as choosing, H,, 7., and a direction) and monochromatic theory is used to estimate the
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desired quantities at a given wave phase (Faltinsen and Demirbilek 1989). In the second, pressure, velocity,
and acceleration spectra are estimated by applying linear theory to translate the surface elevation spectra to
the desired parameter (Dean and Dalrymple 1991). Finally, the random wave simulation technique may be
used to synthetically generate a surface time history and corresponding kinematic and dynamic properties
(Borgman 1990). Of the three methods, the last may provide the most realistic results, but it is also the most
complex approach. These methods lie beyond the CEM and generally require the assistance of a
knowledgeable oceanographic engineer.
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lI-1-5. Definitions of Symbols

n
n()
nx,t
n

n envelope

]1 rms
0
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Dimensionless scaling parameter used in the JONSWAP spectrum for fetch-limited
seas

Phillips’ constant (= 0.0081) (Equation II-1-153)

Fluid particle accelerations [length/time?’]

Peak enhancement factor used in the JONSWAP spectrum for fetch-limited seas
Gamma function

Difference in pressure at a point due to the presence of the solitary wave
[force/length?]

Sampling interval (Equation II-1-144) [time]
Dimensionless pertubation expansion parameter

Spectral bandwidth used in the probability distribution for waves (Equation II-1-
150)

Wave steepness ( = H/L)

Vertical displacement of the water particle from its mean position (Equation II-1-
27) [length]

Displacement of the water surface relative to the SWL [length]

Sea state depicted in time series of the wave profile [length]

Time series of the wave profile at a point x and time ¢ (Equation II-1-175) [length]
Mean or expected value of the sea state (Equation 1I-1-119) [length]

Envelope wave form of two or more superimposed wave trains (Equation I1-1-48)
[length]

Root-mean-square surface elevation [length]

Angle between the plane across which energy is being transmitted and the direction
of wave advance [deg]

Principal (central) direction for the spectrum measured counterclockwise from the
principal wave direction [deg]

Spectral shape parameters controlling the shape and the sharpness of the spectral
peak of the Ochi-Hubble spectral model

Mean or expected value of the sea state (Equation 1I-1-119) [length]
Dimensionless Spectral width parameter

Horizontal displacement of the water particle from its mean position (Equation II-1-
26) [length]
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Mass density of water (salt water = 1,025 kg/m® or 2.0 slugs/ft’; fresh water =
1,000kg/m’ or 1.94 slugs/ft’) [force-time*/length*]

Autocorrelation coefficient (Equation II-1-122)

Standard deviation or square root of the variance

Velocity potential [length?/time]

Weighing factor (Equation I1-1-159)

Stream function

Wave angular or radian frequency (= 2/T) [time™]

Wave amplitude [length]

Major- (horizontal) and minor- (vertical) ellipse semi-axis of wave particle motion
(Equations II-1-34 and II-1-35) [length]. The lengths of 4 and B are measures of
the horizontal and vertical displacements of the water particles (Figure 11-1-4).

Dimensionless Fourier coefficients (Equation II-1-103)

Phase velocity or wave celerity (= L/T = w/k) [length/time]

Dimensionless constant satisfying the normalization condition

Wave group velocity [length/time]

Jacobian elliptic cosine function

Water depth [length]

Total wave energy in one wavelength per unit crest width [length-force/length?]

Phillips’ equilibrium range of the spectrum for a fully-developed sea in deep water
(Equation II-1-153)

One-dimensional spectrum or frequency energy spectrum or wave energy spectral
density (Equation I1-1-144)

Total average wave energy per unit surface area or specific energy or energy
density (Equation II-1-58) [length-force/length’]

Kinetic energy per unit length of wave crest for a linear wave (Equation II-1-53)
[length-force/length?]

Potential energy per unit length of wave crest for a linear wave (Equation II-1-55)
[length-force/length?]

Mean or expected value of the sea state (Equation II-1-119) [length]
Fetch length [length]

Frequency of the spectral peak used in the JONSWAP spectrum for fetch-limited
seas [time™]
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g Gravitational acceleration [length/time’]

G(t,6) Dimensionless directional spreading function

H Wave height [length]

H Mean wave height [length]

H,,; Significant wave height [length]

H, The average height of the largest 1/n of all waves in a record [length]

H, Design wave height [length]

H, Ordered individual wave heights in a record (Equation II-1-115) [length]

H,,. Maximum wave height [length]

H,. Root-mean-square of all measured wave heights [length]

H, Significant wave height [length]

k Modulus of the elliptic integrals

k Number of lags between waves in a sequence in a record (Equation I1-1-169)

k Wave number (= 27/L = 27/CT) [length™']

K(k) Complete elliptic integral of the first kind

K, Pressure response factor (Equation 11-1-43) [dimensionless]

L Wave length [length]

M Dimensionless parameter which is a function of H/d used in calculating water
particle velocities for a solitary wave (Equations II-1-92 & 11-1-93) (Figure II-1-
17).

ey Moments of the wave spectrum

N Dimensionless correction factor in determination of # from subsurface pressure
(Equation II-1-46)

N Dimensionless parameter which is a function of H/d used in calculating water
particle velocities for a solitary wave (Equations II-1-92 & 11-1-93) (Figure II-1-
17).

N Number of waves in a record

N, Number of crests in the wave record

N, Number of zero-upcrossings in the wave record

-0 The subscript 0 denotes deepwater conditions

p Pressure at any distance below the fluid surface [force/length?]

Probability
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Probability density

Probability distribution function - fraction of events that a particular event is not
exceeded (Equation I1-1-124)

Wave power or average energy flux per unit wave crest width transmitted across a
vertical plane perpendicular to the direction of wave advance (Equation I1-1-59)
[length-force/time-length]

Atmospheric pressure [force/length’]

Total or absolute subsurface pressure -- includes dynamic, static, and atmospheric
pressures (Equation I1-1-39) [force/length’]

Probability of exceedence (Equation 1I-1-128)
Spectral peakedness parameter proposed by Goda (1974) (Equation II-1-151)
Bernoulli constant (Equation 11-1-102)

Cross-correlation coefficient - measures the degree of correlation between two
signals (Equation I1-1-123)

Autocorrelation or autocovariance function of the sea state (Equation II-1-121)

Correlation coefficient describing the correlation between wave heights as a
function of p and standard deviation o (Equation I1-1-169)

Correlation coefficient of the wave envelope, relating wave height variation
between successive wave heights (Equation 11-1-173)

Dimensionless controlling parameter for the angular distribution that determines the
peakedness of the directional spreading

Wave period [time]

Mean wave period [time]

Mean crest period [time]

Mean zero-upcrossing wave period [time]

Average wave period between two neighboring wave crests (Equation I1-1-116)
[time]

Wave period associated with the largest wave energy [time]
Sampling record length [time]

Total wave record length [time]

Zero-crossing wave period (Equation II-1-116) [time]

Most probable maximum wave period (Equation II-1-141) [time]

Fluid velocity (water particle velocity) in the x-direction [length/time]
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U Current speed [length/time]
U Wind speed at the 10-m elevation above the sea surface [length/time]
Uz) Mass transport velocity (Equation I1-1-69) [length/time]
U Maximum fluid velocity in the horizontal direction [length/time]
Up Universal parameter for classification of wave theories
Uz Dimensionless Ursell number (Equation II-1-67)
U, Wind speed at 19.5 m above mean sea level (Equation II-1-155) [length/time]
V Volume of water within the wave above the still-water level per unit crest (Equation
11-1-90) [length*/length of crest]
w Fluid velocity (water particle velocity) in the z-direction [length/time]
V. Vertical distance from seabed to the wave crest (Equation 11-1-79) [length]
P, Vertical distance from seabed to the water surface (Equation I1-1-77) [length]
¥, Vertical distance from seabed to the wave trough [length]
z Water depth below the SWL (Figure II-1-1) [length]
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Chapter II-2
Meteorology and Wave Climate

lI-2-1. Meteorology
a. Introduction.
(1) Background.

(a) A basic understanding of marine and coastal meteorology is an important component in coastal and
offshore design and planning. Perhaps the most important meteorological consideration relates to the
dominant role of winds in wave generation. However, many other meteorological processes (e.g., direct
wind forces on structures, precipitation, wind-driven coastal currents and surges, the role of winds in dune
formation, and atmospheric circulations of pollution and salt) are also important environmental factors to
consider in man’s interactions with nature in this sometimes fragile, sometimes harsh environment.

(b) The primary driving mechanisms for atmospheric motions are related either directly or indirectly to
solar heating and the rotation of the earth. Vertical motions are typically driven by instabilities created by
direct surface heating (e.g., air mass thunderstorms and land-sea breeze circulations), by advection of air into
aregion of different ambient air density, by topographic effects, or by compensatory motions related to mass
conservation. Horizontal motions tend to be driven by gradients in near-surface air densities created by
differential heating (for example north-south variations in incoming solar radiation, called insolation, and
differences in the thermal response of ocean and continental areas), and by compensatory motions related to
conservation of mass. The general structure and circulation of the earth’s atmosphere is described in many
excellent textbooks (Hess 1959)

(c) The rotation of the earth influences all motions in the earth’s coordinate system. The net effect of
the earth’s rotation is to deflect all motion to the right in the Northern Hemisphere and to the left in the
Southern Hemisphere. The strength of this deflection (termed Coriolis acceleration) is proportional to the
sine of the latitude. Hence Coriolis effects are strongest in polar regions and vanish at the equator. Coriolis
effects become significant when the trajectory of an individual fluid/gas particle moves over a distance of the
same order as the Rossby radius of deformation, defined as

11-2-1)

where
R, = Rossby radius of deformation
f= Coriolis parameter defined as 1.458 x 10™ sin @, where ¢ is latitude (note fhere is in sec™)
¢ = characteristic velocity of the particle

For a velocity of 10 m/s at a latitude of 45 deg, R, is about 100 km. This suggests that scales of motion with
this velocity and with particle excursions of about 10 km and greater will begin to be significantly affected
by Coriolis at this latitude.

(2) Organized scales of motion in the atmosphere.

Meteorology and Wave Climate 11-2-1
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(a) Table II-2-1 presents ranges of values for the various scales of organized atmospheric motions. This
table should be regarded only as approximate spatial and temporal magnitudes of typical motions
characteristic of these scales, and not as any specific limits of these scales. As can be seen in this table, the
smallest scale of motion involves the transfer of momentum via molecular-scale interactions. This scale of
motion is extremely ineffective for momentum transport within the earth’s atmosphere and can usually be
neglected at all but the slowest wind speeds and/or extremely small portions of some boundary layers. The
next larger scale is that of turbulent momentum transfer. Turbulence is the primary transfer mechanism for
momentum passing from the atmosphere into the sea; consequently, it is of extreme importance to most
scientists and engineers. The next larger scale is that of organized convective motions. These motions are
responsible for individual thunderstorm cells, usually associated with unstable air masses.

Table II-2-1

Ranges of Values for the Various Scales of Organized Atmospheric Motions

Transfer Mechanism Typical Length Scale, meters Typical Time Scale, sec
Molecular 107-102 10"

Turbulent 102-10° 10

Convective 10° - 10* 10°

Meso-scale 10*-10° 10

Synoptic-scale 10° - 10° 10°

Large >10° 10°

(b) The next larger scale is termed the meso-scale. Meso-scale motions such as land-sea breeze
circulations, coastal fronts, and katabatic winds (winds caused by cold air flowing down slopes due to
gravitational acceleration) are important components of winds in near-coastal areas. Important organized
meso-scale motions also exist in frontal regions of extratropical storms, within the spiral bands of tropical
storms, and within tropical cloud clusters. Animportant distinction between meso-scale motions and smaller-
scale motions is the relative importance of Coriolis accelerations. In meso-scale motions, the lengths of
trajectories are sufficient to allow Coriolis effects to become important, whereas the trajectory lengths at
smaller scales are too small to allow for significant Coriolis effects. Consequently, the first signs of trajectory
curvature are found in meso-scale motions. For example, the land-breeze/sea-breeze system in most coastal
areas of the United States does not simply blow from sea to land during the day and from land to sea at night.
Instead, the wind direction tends to rotate clockwise throughout the day, with the largest rotation rates
occurring during the transition periods when one system gives way to the next.

(c) The next larger scale of atmospheric motion is termed the synoptic scale. To many engineers and
scientists, the synoptic scale is synonymous with the term storm scale, since the major storms in ocean areas
occupy this niche in the hierarchy of scales. Storms that originate outside of tropical areas (extratropical
storms) take their energy from horizontal instabilities created by spatial gradients in air density. Storms
originating in tropical regions gain their energy from vertical fluxes of sensible and latent heat. Both the
extratropical (or frontal) storms and tropical storms form closed or semi-closed trajectory motions around
their circulation centers, due to the importance of Coriolis effects at this scale.

(d) The next larger scale of atmospheric motions is termed large scale. This scale of motion is more
strongly influenced by thermodynamic factors than by dynamic factors. Persistent surface temperature
differentials over large regions of the globe produce motions that can persist for very long time periods.
Examples of such phenomena are found in subtropical high pressure systems, which are found in all oceanic
areas and in seasonal monsoonal circulations developed in certain regions of the world.

(e) Scales of motion larger than large scale can be termed interannual scale, and beyond that, climatic
scale. El Nin6 Southern Oscillation (ENSO) episodes, variations in year-to-year weather, changes in storm
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patterns and/or storm intensity, and long-term (secular) climatic variations are all examples of these longer-
term scales of motion. The effects of these phenomena on engineering and planning considerations are very
poorly understood at present. This is compounded by the fact that there does not even exist any real
consensus among atmospheric scientists as to what mechanism or mechanisms control these variations. This
may not diminish the importance of climatic variability but certainly detracts from the ability to treat it
objectively. As better information is collected over longer time intervals, these scales of motion will be better
understood.

(3) Temporal variability of wind speeds.

(a) Winds at any point on the earth represent a superposition of various atmospheric scales of motion,
all interacting to produce local weather phenomena. Each scale plays a specific role in the transfer of
momentum in the atmosphere. Due to the combination of different scales of motion, winds are rarely, if ever,
constant for any prolonged interval of time. Because of this, it is important to recognize the averaging
interval (explicit or implicit) of any data used in applications. For example, some winds represent “fastest
mile” estimates, some winds represent averages over small, fixed time intervals (typically from 1 to 30 min),
and some estimates (such as those derived from synoptic pressure fields) can even represent average winds
over intervals of several hours. Design and planning considerations require different averages for different
purposes. Individual gusts may contribute to the failure mode of some small structures or of certain structural
elements on larger structures. For other structures, 1-min (or even longer) average wind speeds may be more
related to critical structural forces.

(b) When dealing with wave generation in water bodies of differing sizes, different averaging intervals
may also be appropriate. In small lakes and reservoirs or in riverine areas, a 1- to 5-min wind speed may be
all that is required to attain a fetch-limited condition. In this case, the fastest 1- to 5-min wind speed will
produce the largest waves, and thus be the appropriate choice for design and planning considerations. In large
lakes and oceanic regions, the wave generation process tends to respond to average winds over a 15- to 30-
min interval. Consequently, it is important in all applications to be aware of and use the proper averaging
interval for all wind information.

(c) Figure II-2-1 shows the estimated ratio of winds of various durations to 1-hr average wind speeds.
The proper application of Figure II-2-1 would be in converting extremal estimates of wind speeds from one
averaging interval to another. For example, this graph shows that a 100-sec extreme wind speed is expected
to be 1.2 times as high as a 1-hr extreme wind speed. This means that the highest average wind speed in
36 samples of 100-sec duration is expected to be 1.2 times higher than the average for all 36 samples added
together.

(d) Occasionally, wind measurements are reported as fastest-mile wind speeds. The averaging time is
the time required for the wind to travel a distance of 1 mile. The averaging time, which varies with wind
speed, can be estimated from Figure 11-2-2.

(e) FigureII-2-3 shows the estimated time to achieve fetch-limited conditions as a function of wind speed
and fetch length, based on the calculations of Resio and Vincent (1982). The proper averaging time for
design and planning considerations varies dramatically as a function of these parameters. At first, it might
not seem intuitive that the duration required to achieve fetch-limited conditions should be a function of wind
speed; however, this comes about naturally due to the nonlinear coupling among waves in a wind-generated
wave spectrum. The importance of nonlinear coupling is discussed further in the wave prediction section of
this chapter.
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Figure 1I-2-1. Ratio of wind speed of any duration U, to the 1-hr wind speed U,

EXAMPLE PROBLEM II-2-1

FIND:
1-hr average winds for wave prediction

GIVEN:

10-, 50-, and 100-year values of observed winds at a buoy located in the center of a large lake (U,
=20.3 m/s, Uy, =24.8 m/s, Uy, = 28.2 m/s). It is also known that the averaging interval for the buoy
winds is 5 min.

SOLUTION:

Using Figure II-2-1, the ratio of the fastest 5-min wind speed to the average 1-hr wind speed is
approximately 1.09. Using this as a constant conversion factor, the 10-, 50-, and 100-year, 1-hr wind
speeds are estimated as U’ ,,=18.6 m/s, U’,=22.8 m/s, and U’ ,,

11-2-4 Meteorology and Wave Climate



EM 1110-2-1100 (Part II)
(Change 1) 31 July 2003

63

58

33

48

43

38

33

28

23

FASTEST MILE WINDSPEED, U; (m/s)

18

13
20 30 40 50 B0 70 80 80

DURATION TIME, t (s)

Figure 11-2-2. Duration of the fastest-mile wind speed as a
function of wind speed (for open terrain conditions)

b. General structure of winds in the atmosphere.

(1) The earth’s atmosphere extends to heights in excess of 100 km. Considerable layering in the vertical
structure of the atmosphere occurs away from the earth’s surface. The layering is primarily due to the
absorption of specific bands of radiation in vertically localized regions. Absorbed radiation creates
substantial warming in these regions which, in turn, produces inversion layers that inhibit local mixing.
Processes essential to coastal engineering occur in the troposphere, which extends from the earth’s surface
up to an average altitude of 11 km. Most of the meteorological information used in estimating surface winds
in marine areas falls within the troposphere. The lower portion of the troposphere is called the atmospheric
or planetary boundary layer, within which winds are influenced by the presence of the earth’s surface. The
boundary layer typically reaches up to an altitude of 2 km or less.

(2) FigureII-2-4 shows an idealized relationship for an extended wind profile in a spatially homogeneous
marine area (i.e. away from any land). The lowest portion is sometimes termed the constant stress layer, since
there is essentially a constant flux of momentum through this layer. In this bottom layer, the time scale of
momentum transfer is so short that there is little or no Coriolis effect; hence, the wind direction remains
approximately constant. Above this layer is a region that is sometimes termed the Ekman layer. In this
region, the influence of Coriolis becomes more pronounced and wind direction can vary significantly with
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Figure 11-2-3. Equivalent duration for wave generation as a function of fetch and
wind speed

EXAMPLE PROBLEM II-2-2
FIND:
The appropriate 100-year wind speed for a basin with a fetch length of 10 km.

GIVEN:
A 100-year wind speed of 19.9 m/s, derived from 3-hr synoptic charts.

SOLUTION:

Figure II-2-3 requires knowledge of both wind speed and fetch distance; however, reasonable
accuracy is gained by simply using the original wind speed and the appropriate fetch. In this case from
Figure [1-2-3, the appropriate wind-averaging interval is approximately 90 min. Using information from
Figure I1-2-1, the ratio of the highest 90-min wind speed to the highest 3-hr wind speed is given by the
relationship

Usaos/Usosoo = [-0.15 log o (5400)+1.5334]/[-0.15 log,,(10800)+1.5334] = 0.9735/0.9284 = 1.048

Thus, the appropriate wind speed should be 1.048 times 19.9 m/sec, or 20.8 m/sec.
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Figure 11-2-4. Wind profile in atmospheric boundary layer

height. This results in wind directions at the top of the boundary layer which typically deviate about 10 to
15 deg to the right of near-surface wind directions over water and about 25 to 35 deg to the right of near-
surface winds over land. Above the Ekman layer, the so-called geostrophic level is (asymptotically)
approached. Winds in this level are assumed to be outside of the influence of the planetary surface;
consequently, variations in winds above the Ekman layer are produced by different mechanisms than exist

in the atmospheric boundary layer.

(3) Estimates of near-surface winds for wave prediction have historically been based primarily on two
methods: direct interpolation/extrapolation/transformation of local near-surface measurements and
transformation of surface winds from estimates of winds at the geostrophic level. The former method has
mainly been applied to winds in coastal areas or to winds over large lakes. The latter method has been the
main tool for estimating winds over large oceanic areas. A third method, termed “kinematic analysis” has
received little attention in the engineering literature. All three of these methods will be discussed following
a brief treatment of the general characteristics of winds within the atmospheric boundary layer.

c. Winds in coastal and marine areas.

(1) Background.

(a) Winds in marine and coastal areas are influenced by a wide range of factors operating at different
space and time scales. Two potentially important local effects in the coastal zone, caused by the presence of
land, are orographic effects and the sea breeze effect. Orographic effects are the deflection, channeling, or
blocking of air flow by land forms such as mountains, cliffs, and high islands. A rule of thumb for blocking
of low-level air flow perpendicular to a land barrier is given by the following:
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U )< 0.1 = blocked
h {> 0.1 = no blocking (11-2-2)

m

where
1. U =wind speed

h,, = height of the land barrier (in units consistent with U)

(b) Anelevation of only 100 m will cause blocking of wind speeds less than about 10m/s, which includes
most onshore winds (Overland 1992). The horizontal scale of these effects is on the order of 50 - 150 km.
Another orographic effect called katabatic wind is caused by gravitational flow of cold air off higher ground
such as a mountain pass. Since katabatic winds require cold air they are more frequent and strongest in high
latitudes. These winds can have a significant impact on local coastal areas and are very site-specific
(horizontal scale on the order of 25 km).

(c) Another local process, the sea breeze effect, is air flow caused by the differences in surface
temperature and heat flux between land and water. Land temperatures change on a daily cycle while water
temperatures remain relatively constant. This results in a sea breeze with a diurnal cycle. The on/offshore
extent of the sea breeze is about 10 -20 km with wind speeds less than 10 m/s.

(d) Although understanding of atmospheric flows in complicated areas is still somewhat limited,
considerable progress has been made in understanding and quantifying flow characteristics in simple,
idealized situations. In particular, synoptic-scale winds in open-water areas (more than 20 km or so from
land) are known to follow relatively straightforward relationships within the atmospheric boundary layer. The
flow can be considered as a horizontally homogeneous, near-equilibrium boundary layer regime. As
described in Tennekes (1973), Wyngaard (1973,1988), and Holt and Raman (1988), present-day boundary
layer parameterizations appear to provide a relatively accurate depiction of flows within the homogeneous,
near-equilibrium atmospheric boundary layers. Since these boundary-layer parameterizations have a
substantial basis in physics, it is recommended that they be used in preference of older, less-verified methods.

d. Characteristics of the atmospheric boundary layer.

(1) Since the 1960's, evidence from field and laboratory studies (Clarke 1970, Businger et al. 1971,
Willis and Deardorff 1974, Smith 1988) and from theoretical arguments (Deardorff 1968, Tennekes 1973,
Wyngaard 1973, 1988) have supported the existence of a self-similar flow regime within a homogeneous,
near-equilibrium boundary layer in the atmosphere. In the absence of buoyancy effects (due to vertical
gradients in potential temperature) and if no significant horizontal variations in density (baroclinic effects)
exist, the atmospheric boundary layer can be considered as a neutral, barotropic flow. In this case, all flow
characteristics can be shown to depend only on the speed of the flow at the upper edge of the boundary layer,
roughness of the surface at the bottom of the boundary layer, and local latitude (because of the influence of
the earth’s rotation on the boundary-layer flow). Significantly for engineers and scientists, this theory
predicts that wind speed at a fixed elevation above the surface cannot have a constant ratio of proportionality
to wind speed at the top of the boundary layer.

(2) Deardorff (1968), Businger et al. (1971), and Wyngaard (1988) clearly established that flow
characteristics within the atmospheric boundary layer are very much influenced by thermal stratification and
horizontal density gradients (baroclinic effects). Thus, various relationships can exist between flows at the
top of the boundary layer and near-surface flows. This additional level of complication is not negligible in
many applications; therefore, stability effects should be included in wind estimates in important applications.
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e. Characteristics of near-surface winds.

(1) Winds very close to a marine surface (within the constant-stress layer) generally follow some form
of the “law-of-the-wall” for near-boundary flows. At wind speeds above about 5 m/s (at a 10-m reference
level), turbulent transfers, rather than molecular processes, dominate air-sea interaction processes. Given a
neutrally stable atmosphere, the wind speed close to the surface follows a logarithmic profile of the form

U, z
v, - Zm| 2 (11:2:3)
k Z,

where
U, = wind speed at height z above the surface
U. = friction velocity

k =von Karman’s constant (approximately equal to 0.4)
z, = roughness height of the surface

(2) In this case, the rate of momentum transfer into a water column (of unit surface area) from the
atmosphere can be written in the parametric form

r:&U*2

Py
(11-2-4)
-, e
P

U’
where
T = wind stress
p, = density of air

p,, = density of water

Cp

z

= coefficient of drag for winds measured at level z
(3) The international standard reference height for winds is now taken to be 10 m above the surface. If

winds are taken from this level, the z is usually dropped from the subscript notation and the momentum
transfer is represented as

t=C, U (11-2-5)

where Cj, specifically refers now to a 10-m reference level.

(4) Extensive evidence shows that the coefficient of drag over water depends on wind speed (Garratt
1977, Large and Pond 1981, Smith 1988).

(5) When surfaces (land or water) are significantly warmer or cooler than the overlying air, thermal
stability effects tend to modify the logarithmic profile in Equation II-2-3. If the underlying surface is colder
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than the air, the atmosphere becomes stably stratified and turbulent transfers are suppressed. If the surface

is warmer than the air, the atmosphere becomes unstably stratified and turbulent transfers are enhanced. In
this more general case, the form of the near-surface wind profile can be approximated as

2 -of3)

¢ = universal similarity function characterizing the effects of thermal stratification

U

*

U - 2| (I1-2-6)

z

where

L = parameter with dimensions of length that represent the relative strength of thermal stratification
effects (Obukov stability length)

(6) L is positive for stable stratification, negative for unstable stratification, and infinite for neutral
stratification. Algebraic forms for ¢ and additional details on the specification of near-surface flow
characteristics can be found in Resio and Vincent (1977), Hsu (1988), and the ACES Technical Reference
(Leenhnecht, Szuwalski, and Sherlock 1992; Sec. 1-1).

(7) Transfer of momentum into water from the atmosphere can be markedly influenced by stability
effects. For example, at the 10-m reference level, Equations I1-2-4 through I1-2-6 give

C:*
Plvu

k 2 (11-2-7)
1] ; (p( z)
z, L

(8) The system of equations representing the boundary layer is readily solved via a number of numerical
techniques. However, a relationship between z, and U. must also be specified.

In

(9) Since ¢ is negative for stable conditions and positive for unstable conditions, stratification clearly
reduces the coefficient of drag for stable conditions and increases the coefficient of drag for unstable
conditions (Figure 11-2-5). Consequently, for the same wind speed at a reference level, the momentum
transfer rate is lower in a stable atmosphere than in an unstable atmosphere.

(10) Studies by Hsu (1974); Geernaert, Katsaros, and Richter (1986); Huang etal. (1986); Janssen (1989,
1991); and Geernaert (1990) suggest that the coefficient of drag depends not only on wind speed but also on
the stage of wave development. The physical mechanism responsible for this appears to be related to the
phase speed of the waves in the vicinity of the spectral peak relative to the wind speed. At present, there does
not appear to be sufficient information to establish this behavior definitively. Future studies may shed more
light on these effects and their importance to marine and coastal winds.
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Figure lI-2-5. Coefficient of drag versus wind speed

f- Estimating marine and coastal winds.

(1) Wind estimates based on near-surface observations. Three methods are commonly used to estimate
surface marine wind fields. The first of these, estimation of winds from nearby measurements, has the appeal
of simplicity and has been shown to work well for water bodies up through the size of the Great Lakes. To
use this method, it is often necessary to transfer the measurements to different locations (e.g. from overland
to overwater) and different elevations. Such complications necessitate consideration of the factors given
below.

(a) Elevation correction of wind speed. Often winds taken from observations of opportunity (ships, oil
rigs, offshore structures, buoys, aircraft, etc.) do not coincide with the standard 10-m reference level. They
must be converted to the 10-m reference level for predicting waves, currents, surges, and other wind-
generated phenomena. Failure to do so can produce extremely large errors. For the case of winds taken in
near-neutral conditions at a level near the 10-m level (within the elevation range of about 8-12 m), the
“1/7" rule can be applied. This simple approximation is given as

1
Uy =U ( ﬂ] 7 (I1-2-9)

z z
where z is measured in meters.
(b) Elevation and stability corrections of wind speed. Figure II-2-6 provides a more comprehensive

method to accomplish the above transformation, including both elevation and stability effects. The “1/7" rule
is given as a special case. In Figure II-2-6, the ratio of the wind speed at any height to the wind speed
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Figure 1l-2-6. Ratio of wind speed at any height to the wind speed at the 10-m height
as a function of measurement height for selected values of air-sea temperature
difference and wind speed: a) AT=+3°C; b) AT=0°C; c) AT=-3°C. Plots generated with
following conditions: duration of observed and final wind = 3 hrs; latitude = 30° N;
fetch = 42 km; wind observation type - over water; fetch conditions - deep open water
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at the 10-m height is given as a function of measurement height for selected values of air-sea temperature
difference and wind speed. Air-sea temperature difference is defined as

AT =T, - T, (11-2-9)
where
AT = air-sea temperature difference, in deg C
T, = air temperature, in deg C
T, = water temperature, in deg C
As can be seen in Figure 11-2-6, the “1/7" rule should not be used as a general method for transforming wind
speeds from one level to another in marine areas. The ACES software package (Leenhnecht, Szuwalski, and

Sherlock 1992) contains algorithms, based on planetary boundary layer physics, which compute the values
shown in Figure I1-2-6; so it is recommended that ACES be used if at all possible for individual situations.

EXAMPLE PROBLEM II-2-3

FIND:
The estimated wind speed at a height of 10 m.

GIVEN:

The wind speed at a height of 25 m is 20 m/s and the air-sea temperature difference is +3°C.

SOLUTION:

From Figure I1-2-6 (a), the ratio U/U,, is about 1.18 for a 20-m/s wind at a height of 25 m. So
the estimated wind speed at a 10-m height U,, is equal to U at 25 m (20 m/s) divided by U/U,, (1.18),
which gives U,, = 16.9 m/s.

(c) Simplified estimation of overwater wind speeds from land measurements. Due to the behavior of
water roughness as a function of wind speed, the ratio of overwater winds at a fixed level to overland wind
speeds at a fixed level is not constant, but varies nonlinearly as a function of wind speed. Figure 1I-2-7
provides guidance for the form of this variation. The specific values shown in this figure are from a study
of winds in the Great Lakes and care should be taken in applying them to other areas. Figure II-2-8
indicates the expected variation with air-sea temperature difference (calculated with ACES). Although air-sea
temperature difference can significantly affect light and moderate winds, it has only a small impact (5 percent
or less) on high wind speeds typical of design. If at all possible, it is advisable to use locally collected data
to respecify the exact form of Figures I1-2-7 and I1-2-8 for a particular project. One concern here would be
the use of wind measurements from aboveground elevations that are markedly different from those used in
the Resio and Vincent study (9.1 m or 30 ft).

(d) Wind speed variation with fetch. When winds pass over a discontinuity in roughness (e.g., a land-
sea interface), an internal boundary layer is generated. The height of such a boundary layer forms a slope in
the neighborhood of 1:30 in the downwind direction from the roughness discontinuity. This complication
can make it difficult to use winds from certain locations at which winds from some directions fall within the
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Figure 1l-2-7. Ratio R, of windspeed over water U, to windspeed over land U, as a function of
windspeed over land U, (after Resio and Vincent (1977))

marine boundary layer and winds from other directions fall within a land boundary layer. In areas such as
this, a land-to-sea transform (similar to that shown in Figures II-2-7 and I1-2-8) can be used for all angles
coming from the land. Depending on the distance to the water and the elevation of the measurement site,
winds coming from the direction of open water may or may not still be representative of a marine boundary
layer. Guidance for determining the effects of fetch on wind speed modifications can be found in Resio and
Vincent (1977) and Smith (1983). These studies indicate that fetch effects wind speeds significantly only at
locations within about 16 km (10 miles) of shore.

(e) Wind speed transition from land to water. The net effect of wind speed variation with fetch is to
provide a smooth transition from the (generally lower) wind speed over land to the (generally higher) wind
speed over water. Thus, wind speeds tend to increase with fetch over the first 10 miles or so after a transition
from a land surface. The exact magnitude and characteristics of this transition depend on the roughness
characteristics of the terrain and vegetation and on the stability of the air flow. A very simplistic
approximation to this wind speed variation for the Resio and Vincent curves used here could be obtained by
fitting a logarithmic curve to the asymptotic overland and overwater wind speed values. However, for most
design and engineering purposes, it is probably adequate to simply use the long-fetch values with the
recognition that they are somewhat conservative. The one situation that should cause some concern would
be if overwater wind speed measurements are taken near the upwind end of a fetch. These winds could be
considerably lower than wind speeds at the end of the fetch and underconservative values for wave conditions
could result from the use of such (uncorrected) winds in a predictive scheme.
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temperature effects)

(f) Empirical relationship. A rough empirical relationship between overwater wind speeds and land
measurements is discussed in Part I11-4-2-b. This highly simplified relationship is based on several restrictive
assumptions including land measurements over flat, open terrain near the coast; and wind direction is within
45 deg of shore-normal. The approach may be helpful where wind measurements are available over both land
and sea at a site, but the specific relationship of Equation I1I-4-12 is not recommended for general
hydrodynamic applications.

(2) Wind estimates based on information from pressure fields and weather maps. A primary driving
force of synoptic-scale winds above the boundary layer is produced by horizontal pressure gradients.
Figure 11-2-9 is a simplified surface chart for the north Pacific Ocean. The area labeled L in the right center
of the chart and the area labeled H in the lower left corner of the chart are low- and high-pressure areas. The
pressures increase moving outward from L (isobars 972, 975, etc.) and decrease moving outward from H
(isobars 1026, 1023, etc.). Synoptic-scale winds at latitudes above about 20 deg tend to blow parallel to the
isobars, with the magnitude of the wind speed being inversely proportional to the spacing between the isobars.
Scattered about the chart are small arrow shafts with a varying number of feathers. The direction of a shaft
shows the direction of the wind, with each one-half feather representing a unit of 5 kt (2.5 m/s) in wind speed.

(b) Figure II-2-10 shows a sequence of weather maps with isobars (lines of equal pressure) for the
Halloween Storm of 1991. An intense extratropical storm (extratropical cyclone) is located off the coast of
Nova Scotia. Other information available on this weather map besides observed wind speeds and directions
includes air temperatures, cloud cover, precipitation, and many other parameters that may be of interest.
Figure I1I-2-11 provides a key to decode the information.

(c) Historical pressure charts are available for many oceanic areas back to the end of the 1800’s. This
is a valuable source of wind information when the pressure fields and available wind observations can be used
to create marine wind fields. However, the approach for linking pressure fields to winds can be complex, as
discussed in the following paragraphs.
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Figure 1I-2-10. Surface synoptic weather charts for the Halloween storm of 1991
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Figure 1l-2-11. Key to plotted weather report

EXAMPLE PROBLEM II-2-4

FIND:
The estimated overwater wind speed at a site over 10 miles from shore, given that the air-sea temperature
difference is near zero (AT=0).

GIVEN:
A wind speed of 7.5 m/s at an airport location well inland (at the airport standard of 30 ft above ground

elevation).

SOLUTION:

From Figure II-2-7 the ratio of overwater wind to overland wind is about 1.25. In the absence of information
to calibrate a local relationship, multiply the 7.5-m/s wind speed by 1.25 to obtain an estimated overwater wind
speed 0f 9.4 m/s. It should be recognized that the 90-percent confidence interval for this estimate is approximately
15 percent. It may be desirable to include this factor of conservatism in some calculations. However, at this short
fetch, there is already conservatism due to the lack of consideration of wind speed variations with fetch.

Meteorology and Wave Climate



Meteorology and Wave Climate

EM 1110-2-1100 (Part Il)
(Change 1) 31 July 2003

(d) Synoptic-scale winds in nonequatorial regions are usually close to a geostrophic balance, given that
the isobars are nearly straight (i.e. the radius of curvature is large). For this balance to be valid, the flow must
be steady state or very nearly steady state. Furthermore, frictional effects, advective effects, and horizontal
and vertical mixing must all be negligible. In this case, the Navier-Stokes equation for atmospheric motions
reduces to the geostrophic balance equation given by

&

U, - (11-2-10)

U

1
p.Sf

n

where
U, = geostrophic wind speed (located at the top of the atmospheric boundary layer)
dp/dn = gradient of atmospheric pressure orthogonal to the isobars

Wind direction at the geostrophic level is taken to be parallel to the local isobars. Hence, purely geostrophic
winds in a large storm would move around the center of circulation, without converging on or diverging from
the center.

(e) Figure I1-2-12 may be used for simple estimates of geostrophic wind speed. The distance between
isobars on a chart is measured in degrees of latitude (an average spacing over a fetch is ordinarily used), and
the latitude position of the fetch is determined. Using the spacing as ordinate and location as abscissa, the
plotted, or interpolated, slant line at the intersection of these two values gives the geostrophic wind speed.
For example, in Figure [1-2-9, a chart with 3-mb isobar spacing, the average isobar spacing (measured normal
to the isobars) over fetch F, located at 37 deg N. latitude, is 0.70 deg latitude. Scales on the bottom and left
side of Figure I1-2-12 are used to find a geostrophic wind of 34.5 m/s (67 kt).

(f) If isobars exhibit significant curvature, centrifugal effects can become comparable or larger than
Coriolis accelerations. In this situation, a simple geostrophic balance must be replaced by the more general
gradient balance. The equation for this motion is

2

U
Ug,, = Lf dp + fgr (I1-2-11)
P, n r,
where

U,, = gradient wind speed
r. = radius of curvature of the isobars

Winds near the centers of small extratropical storms and most tropical storms can be significantly affected
and even at times dominated by centrifugal effects, so the more general gradient wind approximation is
usually preferred to the geostrophic approximation. Gradient winds tend to form a small convergent angle
(about 5° to 10°) relative to the isobars.

(g) An additional complication results when the center of a storm is not stationary. In this case, the
steady-state approximation used in both the geostrophic and gradient approximations must be modified to
include non-steady-state effects. The additional wind component due to the changing pressure fields is
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Meteorology and Wave Climate



EM 1110-2-1100 (Part Il)
(Change 1) 31 July 2003

termed the isallobaric wind. In certain situations, the isallobaric wind can attain magnitudes nearly equal to
those of geostrophic wind.

(h) Due to the factors discussed above, winds at the geostrophic level can be quite complicated.
Therefore, it is recommended that these calculations be performed with numerical computer codes rather than
manual methods.

(i) Once the wind vector is estimated at a level above the surface boundary layer, it is necessary to
relate this wind estimate to wind conditions at the 10-m reference level. In some past studies, a constant
proportionality was assumed between the wind speeds aloft and the 10-m wind speeds. Whereas this might
suffice for a narrow range of wind speeds if the atmospheric boundary layer were near neutral and no
horizontal temperature gradients existed, it is not a very accurate representation of the actual relationship
between surface winds and winds aloft. Use of a single constant of proportionality to convert wind speeds
at the top of the boundary layer to 10-m wind speeds is not recommended.

() Over land, the height of the atmospheric boundary layer is usually controlled by a low-level

inversion layer. This is typically not the case in marine areas where, in general, the height of boundary layer
(in non-equatorial regions) is a function of the friction velocity at the surface and the Coriolis parameter, i.e.

ho= A— (11-2-12)

where
A = dimensionless constant

(k) Researchers have shown that, within the boundary layer, the wind profile depends on latitude (via
the Coriolis parameter), surface roughness, geostrophic/gradient wind velocity, and density gradients in the
vertical (stability effects) and horizontal (baroclinic effects). Over large water bodies, if the effects of wave
development on surface roughness are neglected, the boundary-layer problem can be solved directly from
specification of these factors. Figure II-2-13 shows the ratio of the wind at a 10-m level to the wind speed
at the top of the boundary layer (denoted by the general term U, here) as a function of wind speed at the top
of the boundary layer, for selected values of air-sea temperature difference. Figure II-2-14 shows the ratio
of friction velocity at the water’s surface to the wind speed at the upper edge of the boundary layer as a
function of these same parameters. It might be noted from Figure 11-2-14 that a simple approximation for U.
in neutral stratification as a function of U, is given by

U, = 0.0275 U, (11-2-13)

This approximation is accurate within 10 percent for the entire range of values shown in Figure 11-2-14.

(I) Measured wind directions are generally expressed in terms of azimuth angle from which winds
come. This convention is known as a meteorological coordinate system. Sometimes (particularly in relation
to winds calculated from synoptic information), a mathematical vector coordinate or Cartesian coordinate
system is used (Figure 1I-2-15). Conversion from the vector Cartesian to meteorological convention is
accomplished by
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0,, =270 -0, (11-2-14)

met
where
0,.. = direction in standard meteorological terms
0,.. = direction in a Cartesian coordinate system with the zero angle wind blowing toward the east

(m) Wind estimates based on kinematic analyses of wind fields. In several careful studies, it has been
shown that one method of obtaining very accurate wind fields is through the application of “kinematic
analysis” (Cardone 1992). In this technique, a trained meteorological analyst uses available information from
weather charts and other sources to construct detailed pressure fields and frontal positions. Using concepts
of continuity along with this information, the analyst then constructs streamlines and isotachs over the entire
analysis region. Unfortunately, this procedure is very labor-intensive; consequently, most analysts combine
kinematic analyses of small subregions within their region with numerical estimates over the entire region.
This method is sometimes referred to as a man-machine mix.

g Meteorological systems and characteristic waves. Many engineers and scientists working in marine
areas do not have a firm understanding of wave conditions expected from different wind systems. Such an
understanding is helpful not only for improving confidence in design conditions, but also for establishing
guidelines for day-to-day operations. Two problems that can arise directly from this lack of experience are
(1) specification of design conditions with a major meteorological component missing, and 2) underestimation
of the wave generation potential of particular situations. An example of the former situation might be the
neglect of extratropical waves in an area believed to be dominated by tropical storms. For example, in the
southern part of the Bay of Campeche along the coast of Mexico, one might expect that hurricanes dominate
the extreme wave climate. However, outbursts of cold air termed “northers™ actually contribute to and even
control some of the extreme wave climate in this region. An example of the second situation can be found
in decisions to operate a boat or ship in a region where storm waves can endanger life and property.
Table II-2-2 assists users of this manual in understanding such problems. Potentially threatening wind and
wave conditions from various scales of the meteorological system are categorized.

Meteorology and Wave Climate 11-2-23



EM 1110-2-1100 (Part Il)
(Change 1) 31 July 2003

EXAMPLE PROBLEM II-2-5

FIND:
The 10-m wind speed, the wind direction, and the coefficient of drag.

GIVEN:

A pressure gradient of 5 mb in 100 km,
an air-sea temperature difference of -5° C
(i.e. the water is warmer than the air, as is
typical in autumn months), the latitude of
the location of interest (equal to 45° N), and
the geographic orientation of the isobars.

SOLUTION:
Option 1 - From Equation 1I-2-10, wind speed is calculated (in cgs units) as

U, = 1/(1.2x107 x 1.03x10*) x (dp/dn) (a)
=1/1.236x107 x (5 x 1000 )/(100 x 100000) (b)

= 4045 cm/sec (©)
=40.45 m/sec

The 1.2x107 factor in step (a) is air density in g/cm’.

The underlined 1000 factor in step (b) converts mb to dynes/cm?®. The 100000 factor in step (b)
converts km to cm. From U, and AT and Figure 1I-2-13

U,/U,=0.68 and U,,=U,xU,/U,=40.45x0.68=27.5m/s
From Figure I1-2-5
Cp =0.0024

Wind Direction: Parallel to isobars, counterclockwise circulation around low, therefore the
direction is west

Option 2 - Use Figure 11-2-12, though it requires pressure gradient information in a different
form than given in this example.

Table 11-2-2
Local Seas Generated by Various Meteorological Phenomena
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Characteristic

Type of Wind System Wave Characteristics Height and Period
Individual thunderstorm Very steep waves. H 05-15m
T 1.5-3sec
No significant horizontal rotation. Waves can become relatively large if storm speed
and group velocity of spectral peak are nearly equal.
Size, 1-10 km
Can be a threat to some operations in open-ocean,
coastal, and inland waters.
Supercell thunderstorms Very steep waves. H 2-3m
T 3-6sec
Begins to exhibit some rotation. Waves can become relatively large if storm speed
and group velocity of spectral peak are nearly equal.
Size, 5-20 km
Can pose a serious threat to some operations in
open-ocean, coastal, and inland waters.
Sea breeze Waves of intermediate steepness. H 05-15m
T 3-5sec
Thermally driven near-coast winds. Can modify local wave conditions when superposed
on synoptic systems.
Size, 10-100 km
Can affect some coastal operations.
Coastal fronts Can modify local wave conditions near coasts. H 05-1.0m
T 3-4sec
Results from juxtaposition of cold air and Minimal effects on wave conditions due to orientation
warm water. of winds and fetches.
Size, 10 km across and 100 km long
Lee waves Generates waves that can deviate significantly in H 05-15m
direction from synoptic conditions. T 2-5sec
“Spin-off” eddies due to interactions between Can affect coastal wave climates.
synoptic winds and coastal topography
Size, 10's of km
Frontal squall lines Can create severe hazards to coastal and offshore H 1-5m
operations. T 4-7sec
Organized lines of thunderstorms moving Can generate extreme wave conditions for inland
within a frontal area. waters.
Size, 100's of km long and 10 km across Waves can become quite large if frontal area becomes

stationary or if rate of frontal movement matches wave
velocity of spectral peak.

Can create significant addition to existing synoptic-
scale waves.

(Sheet 1 of 3)
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Table 1I-2-2 (Continued)

Mesoscale Convective Complex (MCC) Important in interior regions of U.S. H fetch-limited
T fetch-limited

Large, almost circular system of Can generate extreme waves for short-fetch and

thunderstorms with rotation around a central intermediate-fetch inland areas. U=20m/s

point (2-3 form in the U.S. per year).

Size, 100-400 km in diameter

Tropical depression Squall lines superposed on background winds can H 1-4m
produce confused, steep waves. T 4-8sec

Weakly circulating tropical system with winds

under 45 mph.

Tropical storm Very steep seas. H 5-8m
T 5-9sec

Circulating tropical system with winds over ~ Highest waves in squall lines.

45 mph and less than 75 mph.

Hurricane Can produce large wave heights. Saffir Simpson Hurricane
Scale
Intense circulating storm of tropical origin Directions near storm center are very short-crested and
with wind speeds over 75 mph. confused. SS H(m) T(sec)
1 48 7-11
Shape is usually roughly circular. Highest waves are typically found in the right rear 2 610 912
quadrant of a storm. 3 812 1113
4 10-14 12-15
Wave conditions are primarily affected by storm 5 1217 13-17

intensity, size, and forward speed, and in weaker
storms by interactions with other synoptic scale and  (see Table IV-1-4)
large-scale features.

Extratropical cyclones Extreme waves in most open-ocean areas north Weak:

of 35° are produced by these systems. H 3-5m T 5-10 sec
Low pressure system formed outside of Moderate:
tropics. Large waves tend to lie in region of storm with winds H 5-8m T 9-13 sec

parallel to direction of storm movement. Intense:
Shapes are variable for weak and moderate H 8-12m T 12-17sec
strength storms, with intense storms tending Predominant source of swell for most U.S. east coast Extreme:
to be elliptical or circular. and west coast areas. H 13-18m T 15-20sec
Migratory highs Produce moderate storm conditions alongU.S.east H 1-4m

coast south of 30° latitude when pressure gradients T 4-10sec
Slowly moving high-pressure systems. become steep.
Stationary highs Produce low swell-like waves due to long fetches. H 1-3m

T 5-10sec

Permanent systems located in subtropical Can interact with synoptic-scale and large-scale
ocean areas. weather systems to produce moderately intense wave

generation.

Southern portions constitute the trade winds.
Very persistent wave regime.

(Sheet 2 of 3)
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Table 11-2-2 (Concluded)

Monsoonal winds Episodic wave generation can generate large wave H 4-7Tm
conditions. T 6-11sec

Biannual outbursts of air from continental Very important in the Indian Ocean, part of the Gulf

land masses. of Mexico, and some U.S. east coast areas.

Long-wave generation Long waves can be generated by moving

pressure/wind anomalies (such as can be associated
with fronts and squall lines) and can resonate with long
waves if the speed of frontal or squall line motion is
approximately vgd .

Examples of this phenomenon have been linked to
inundations of piers and beach areas in Lake Michigan
and Daytona Beach in recent years.

Gap winds These winds may be extremely important in U= 40 m/s
generating waves in many U.S. west coast areas

Wind acceleration due to local topographic  not exposed to open-ocean waves.

funneling.

(Sheet 3 of 3)

h.  Winds in hurricanes.

(1) Intropical and in some subtropical areas, organized cloud clusters form in response to perturbations
in the regional flow. If a cloud cluster forms in an area sufficiently removed from the Equator, then Coriolis
accelerations are not negligible and an organized, closed circulation can form. A tropical system with a
developed circulation but with wind speeds less than 17.4 m/s (39 mph) is termed a tropical depression.
Given that conditions are favorable for continued development (basically warm surface waters, little or no
wind shear, and a high pressure area aloft), this circulation can intensify to the point where sustained wind
speeds exceed 17.4 m/s, at which time it is termed a tropical storm. If development continues to the point
where the maximum sustained wind speed equals or exceeds 33.5 m/s (75 mph), the storm is termed a
hurricane. Ifsuch a storm forms west of the international date line, it is called a typhoon. In this section, the
generic term hurricane includes hurricanes and typhoons, since the primary distinction between them is their
point of origin. Tropical storms will also follow some of the wind models given in this section, but since
these storms are weaker, they tend to be more poorly organized.

(2) Although it might be theoretically feasible to model a hurricane with a primitive equation approach
(i.e. to solve the coupled dynamic and thermodynamic equations directly), information to drive such a model
is generally lacking and the roles of all of the interacting elements within a hurricane are not well-known.
Consequently, practical hurricane wind models for most applications are driven by a set of parameters that
characterize the size, shape, rate of movement, and intensity of the storm, along with some parametric
representation of the large-scale flow in which the hurricane is imbedded. Myers (1954); Collins and
Viehmann (1971); Schwerdt, Ho, and Watkins (1979); Holland (1980); and Bretschneider (1990) all describe
and justify various parametric approaches to wind-field specification in tropical storms. Cardone,
Greenwood, and Greenwood (1992) use a modified form of Chow’s (1971) moving vortex model to specify
winds with a gridded numerical model. However, since this numerical solution is driven only by a small set
of parameters and assumes steady-state conditions, it produces results that are similar in form to those of
parametric models (Cooper 1988). Cardone et al. (1994) and Thompson and Cardone (1996) describe
amore general model version that can approximate irregularities in the radial wind profile such as the double
maxima observed in some hurricanes.

(3) All of the above models have been shown to work relatively well in applications; however, the
Holland (1980) model appears to provide a better fit to observed wind fields in early stages of rapidly
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developing storms and appears to work as well as other models in mature storms. Consequently, this model
will be described in some detail here. In presently available hurricane models, wind fields are assumed to
have no memory and thus can be determined by only a small set of parameters at a given instant.

(4) In the Holland model, hurricane pressure profiles are normalized via the relationship

P~ Pe (I1-2-15)
pn - pc

B:

where
p = pressure at radius r
r = arbitrary radius
p. = central pressure in the storm

p, = ambient pressure at the periphery of the storm

(5) Holland showed that the family of B-curves for a number of storms resembled a family of
rectangular hyperbolas and could be represented as

r®In (B! =4
or
-1 _ i
P exp ( rB] (11-2-16)
or
B = exp (r—‘:)

A = scaling parameter with units of length

B = dimensionless parameter that controls the peakedness of the wind speed distribution

(6) This leads to a representation for the pressure profile as

-A
p=p.+ @, -p) exp( —B) (I1-2-17)
r
which then leads to a gradient wind approximation of the form
y 1
AB@, - p.) exp(—B) S 2
U, - re)oL il oo (11-2-18)
p,r B 4 2
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where
U,, = gradient approximation to the wind speed

(7) Inthe intense portion of the storm, Equation II-2-18 reduces to a cyclostrophic approximation given
by

,A 1
AB(p, - p.) exp(—B) 2
U, = . il (11-2-19)

par

where
U. = cyclostrophic approximation to the wind speed

which yields explicit forms for the radius to maximum winds as

=
I

N
|-

(11-2-20)
where

R, = distance from the center of the storm circulation to the location of maximum wind speed

(8) The maximum wind speed can then be approximated as

1 1
L 1
U, = (ﬁ] @, - p)? (I1-2-21)

where
U,.. = maximum velocity in the storm
e = base of natural logarithms, 2.718

(9) Rosendal and Shaw (1982) showed that pressure profiles and wind estimates from the Holland
model appeared to fit observed typhoon characteristics in the central North Pacific. If B is equal to 1 in this
model, the pressure profile and wind characteristics become similar to results of Myers (1954); Collins and
Viehmann (1971); Schwerdt, Ho, and Watkins (1979); and Cardone, Greenwood, and Greenwood (1992).
In the case of the Cardone, Greenwood, and Greenwood model, this similarity would exist only for the case
of a storm with no significant background pressure gradient.

(10) Holland argues that B=1 is actually the lower limit for B and that, in most storms, the value is likely
to be more in the range of 1.5 t0 2.5. As shown in Figure I1-2-16, this argument is supported by the data from
Atkinson and Holliday (1977) and Dvorak (1975) taken from studies of Pacific typhoons. The effect of a
higher value of B is to produce a more peaked wind distribution in the Holland model than exists in models
with B set to a value of 1. According to Holland (1980), use of a wind field model with B=1 will
underestimate winds in many tropical storms. In applications, the choices of A and B can either be based on
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the best two-parameter fit to observed pressure profiles or on the combination of an R, value with the data
shown in Figure II-2-16. It is worth noting here that the Holland model is similar to several other parametric
models, except that it uses two parameters rather than one in describing the shape of the wind profile. This
second parameter allows the Holland model to represent a range of peakedness rather than only a single
peakedness in applications.
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Figure 11-2-16. Climatological variation in Holland’s “B” factor
(Holland 1980)

(11) As a final element in application of the Holland wind model, it is necessary to consider the effects
of storm movement on the surface wind field. Since a hurricane moves most of its mass along with it (unlike
an extratropical storm), this step is a necessary adjustment to the storm wind field and can create a marked
asymmetry in the storm wind field, particularly for the case of weak or moderate storms. Hughes’ (1952)
composite wind fields from moving hurricanes indicated that the highest wind speeds occurred in the right
rear quadrant of the storm. This supports the interpretation that the total wind in a hurricane can be obtained
by adding a wind vector for storm motion to the estimated winds for a stationary storm. On the other hand,
Chow’s (1971) numerical results suggest that winds in the front right and front left quadrants are more likely
to contain the maximum wind speeds in a moving hurricane. These contradictory results have made it
difficult to treat the effects of storm movement of surface wind fields in a completely satisfactory fashion.
Various researchers have either ignored the problem or suggested that, at least in simple parametric models,
the effects of storm movement can be adequately approximated by adding a constant vector representative
of the forward storm motion to the estimated wind for a stationary storm. In light of the overall lack of
definitive information on this topic, the latter approach is considered sufficient.

(12) Atthis point, it should be stressed that Equations I1-2-18, 19, and 21 and superposition of the storm
motion vector are only applicable to winds above the surface boundary layer. In order to convert these winds

to winds at a 10-m reference level, it is necessary to apply a model of the type described in Part I1-2-1-c-(3)-
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(b). As shown in that section, it is not advisable to use a constant ratio between winds at the top of the
boundary layer and winds at a 10-m level. If a complete wind field is required for a particular application
it is recommended to use a planetary-boundary-layer (PBL) model combined with either a moving vortex
formulation or a numerical version of a parametric model.

(13) To provide some guidance regarding maximum sustained wind speeds at a 10-m reference level,
Figure 11-2-17 shows representative curves of maximum sustained wind speed versus central pressure for
selected values of forward storm movement. It should be noted that maximum winds at the top of the
boundary layer are relatively independent of latitude, since the wind balance equation is dominated by the
cyclostrophic term; however, there is a weak dependence on latitude through the boundary-layer scaling,
which is latitude-dependent. This dependence and dependence of the maximum wind speed on the radius to
maximum wind were both found to be rather small; consequently, only fixed values of latitude and R,,,, have
been treated here. From the methods used in deriving these estimates, winds given here can be regarded as
typical values for about a 15- to 30-min averaging period. Thus, winds from this model are appropriate for
use in wave models and surge models, but must be transformed to shorter averaging times for most structural
applications.

(14) Values for wind speeds in Figure 11-2-17 may appear low to people who recall reports of maximum
wind speeds for many hurricanes in the range of 130-160 mph (about 58-72 m/s). First, it should be
recognized that very few good measurements of hurricane wind speed exist today. Where such measurements
exist, they give support to the values presented in Figure I1I-2-17. Second, the values reported as sustained
wind speeds often come from airplane measurements, so they tend to be considerably higher than
corresponding values at 10 m. Third, winds at airports and other land stations often use only a 1-min
averaging time in their wind speed measurements. These winds are subsequently reported as sustained wind
speeds. An idea of the magnitude that some of these effects can have on wind estimates may be gained via
the following example. The central pressure of Hurricane Camille as it moved onshore at a speed of about
6 m/s in 1969 was about 912 mb. From Figure II-2-17, the 15- to 30-min average wind speed is estimated
to be 52.5 m/s. Converting this to a 1-min wind speed in miles per hour yields approximately 150 mph,
which is in very reasonable agreement with the measured and estimated winds in this storm. It is important
to recognize though that these higher wind speeds are not appropriate for applications in surge and wave
models.

(15) Figures 11-2-18 and 1I-2-19 are examples of the output from the hurricane model presented here.
Figure I1-2-18 shows the four radials. Figure II-2-19 shows wind speed along Radials 1 and 3, as a function
of dimensionless distance along the radial (#/R,,,,) for a central pressure p, of 930 mb and forward speeds of
2.5 m/s, 5.0 m/s, and 7.5 m/s. The inflow angle along these radii (not shown) can be quite variable. The
behavior of this angle is a function of several factors and is still the subject of some debate.

Meteorology and Wave Climate 11-2-31



EM 1110-2-1100 (Part Il)
(Change 1) 31 July 2003

Variation of Vmax
60
§
50 \ &
Y %
: \\& -
é 40 \&
N \&_ _—
\ \ 10
»b%r\;ﬁ
30 W%S 2.5
80, B
0
25
900 920 940 960 980 1000
Cp (mb)
Figure lI-2-17. Relationship of estimated maximum wind speed in a hurricane at 10-m
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EXAMPLE PROBLEM II-2-6
FIND:
The expected maximum sustained wind speed for this storm for surge and/or wave prediction and

the maximum 1-min wind speed.

GIVEN:

A hurricane located at a latitude of 28° with a central pressure of 935 mb and a forward velocity of
10 m/s.

SOLUTION:

Using Figure 1I-2-17, the maximum wind speed in a moving storm with the parameters given here
is approximately 47.3 m/s for a 15- to 30-min average at the 10-m level. From Figure 1I-2-1, the ratio
of'a 30-min wind (chosen here to give a conservative approximation) to a 1-min wind is approximately
1.23. Multiplying this factor times 47.3 yields a 1-min wind speed of 58.2 m/s (130 mph).

i.  Step-by-step procedure for simplified estimate of winds for wave prediction.

(1) Introduction. This section presents simplified, step-by-step methods for estimating winds to be
used in wave prediction. The methods include the key assumption that wind fields are well-organized and
can be adequately represented as an average wind speed and direction over the entire fetch. Most engineers
can conveniently use computer-based wind estimation tools such as ACES, and such tools should be used in
preference to the corresponding methods in this section. The simplified methods provide an approximation
to the processes described earlier in this chapter. The methods embody graphs presented earlier, some of
which were generated with ACES. The simplified methods are particularly useful when quick, low-cost
estimates are needed. They are reasonably accurate for simple situations where local effects are small.

(2) Wind measurements. Winds can be estimated using direct measurements or synoptic weather charts.
For preliminary design, extreme winds derived from regional records may also be useful (Part I[-9-6). Actual
wind records from the site of interest are preferred so that local effects such as orographic influences and
sea breeze are included. If wind measurements at the site are not available and cannot be collected,
measurements at a nearby location or synoptic weather charts may be helpful. Wind speeds must be properly
adjusted to avoid introducing bias into wave predictions.

(3) Procedure for adjusting observed winds. When ACES is unavailable, the following procedure can
be used to adjust observed winds with some known level, location (over water or land), and averaging time.
A logic diagram (Figure 1I-2-20) outlines the steps in adjusting wind speeds for application in wave growth
models.

(a) Level. If the wind speed is observed at any level other than 10 m, it should be adjusted to 10 m
using Figure II-2-6 (see Example Problem II-2-3).

(b) Duration. If extreme winds are being considered, wind speed should be adjusted from the averaging
time of the observation (fastest mile, 5-min average, 10-min average, etc.) to an averaging time appropriate
for wave prediction using Figure II-2-1 (see Example Problem I1-2-1). Typically several different averaging
times should be considered for wave prediction to ensure that the maximum wave growth scenario has been
identified. When the fetch is limited, Figure II-2-3 can be used to estimate the maximum averaging time to
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be considered. When the observed wind is given in terms of the fastest mile, Figure I1-2-2 can be used to
convert to an equivalent averaging time.

(c) Overland or overwater. When the observation was collected overwater (within the marine boundary
layer), this adjustment is not needed. When the observation was collected overland and the fetch is long
enough for full development of a marine boundary layer (longer than about 16 km or 10 miles), the observed
wind speed should be adjusted to an overwater wind speed using Figure 11-2-7 (see Example Problem I1-2-4).
Otherwise (for overland winds and fetches less than 16 km), wave growth occurs in a transitional atmospheric
boundary layer, which has not fully adjusted to the overwater regime. In this case, wind speeds observed
overland must be increased to better represent overwater wind speeds. A factor of 1.2 is suggested here, but
no simple method can accurately represent this complex case. In relation to all of these adjustments, the term
overland implies a measurement site that is predominantly characterized as inland. If a measurement site is
directly adjacent to the water body, it may, for some wind directions, be equivalent to overwater.

(d) Stability. For fetches longer than 16 km, an adjustment for stability of the boundary layer may also
be needed. Ifthe air-sea temperature difference is known, Figure 11-2-8 can be used to make the adjustment.
When only general knowledge of the condition of the atmospheric boundary layer is available, it should be
categorized as stable, neutral, or unstable according to the following:

Stable - when the air is warmer than the water, the water cools air just above it and decreases mixing in
the air column (R, = 0.9).

Neutral - when the air and water have the same temperature, the water temperature does not affect mixing
in the air column (R, = 1.0).

Unstable - when the air is colder than the water, the water warms the air, causing air near the water
surface to rise, increasing mixing in the air column (R, = 1.1).

When the boundary layer condition is unknown, an unstable condition, R, = .1 , should be assumed.

(4) Procedure for adjusting winds from synoptic weather charts. As discussed earlier, synoptic weather
charts are maps depicting isobars at sea level. The free air, or geostrophic, wind speed is estimated from these
sea level pressure charts. Adjustments or corrections are then made to the geostrophic wind speed. Pressure
chart estimations should be used only for large areas, and the estimated values should be compared with
observations, if possible, to verify their accuracy.

(a) Geostrophic wind speed. To estimate geostrophic wind speed, Equation 11-2-10 or Figure 11-2-12
should be used (see Example Problem II-2-5).

(b) Level and stability. Wind speed at the 10-m level should be estimated from the geostrophic wind
speed using Figure 11-2-13. The resulting speed should then be adjusted for stability effects as needed using
Figure II-2-8.

(c) Duration. Wind duration estimates are also needed. Since synoptic weather charts are prepared only
at 6-hr intervals, it may be necessary to use interpolation to determine duration. Linear interpolation is
adequate for most cases. Interpolation should not be used if short-duration phenomena, such as frontal
passages or thunderstorms, are present.

(5) Procedure for estimating fetch. Fetch is defined as a region in which the wind speed and direction
are reasonably constant. Fetch should be defined so that wind direction variations do not exceed 15 deg and
wind speed variations do not exceed 2.5 m/s (5 knots) from the mean. A coastline upwind from the point of
interest always limits the fetch. Anupwind limit to the fetch may also be provided by curvature, or spreading,
of the isobars or by a definite shift in wind direction. Frequently the discontinuity at a weather front will limit
fetch.
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lI-2-2. Wave Hindcasting and Forecasting
a. Introduction.

(1) The theory of wave generation has had a long and rich history. Beginning with some of the classic
works of Kelvin (1887) and Helmholtz (1888) in the 1800’s, many scientists, engineers, and mathematicians
have addressed various forms of water wave motions and interactions with the wind. In the early 1900's, the
work of Jeffreys (1924, 1925) hypothesized that waves created a “sheltering effect” and hence created a
positive feedback mechanism for transfer of momentum into the wave field from the wind. However, it was
not until World War II that organized wave predictions began in earnest. During the 1940's, large bodies of
wave observations were collated and the bases for empirical wave predictions were formulated. Sverdrup
and Munk (1947, 1951) presented the first documented relationships among various wave-generation
parameters and resulting wave conditions. Bretschneider (1952) revised these relationships based on
additional evidence; methods derived from these exemplary pioneer works are still in active use today.

(2) The basic tenet of the empirical prediction method is that interrelationships among dimensionless
wave parameters will be governed by universal laws. Perhaps the most fundamental of these laws is the
fetch-growth law. Given a constant wind speed and direction over a fixed fetch, it is expected that waves will
reach a stationary fetch-limited state of development. In this situation, wave heights will remain constant (in
a statistical sense) through time but will vary along the fetch. If dimensionless wave height is taken as

e (1-2-22)
u*
where

H = characteristic wave height, originally taken as the significant wave height but more recently taken
as the energy-based wave height H,,

u. = friction velocity
and dimensionless fetch is defined as

¥ -8 (11-2-23)

2
u *
where

X = straight line distance over which the wind blows

then idealized, fetch-limited wave heights are expected to follow a relationship of the form

A

H=x X" (I1-2-24)

where
A, = dimensionless coefficient

m, = dimensionless exponent
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(3) Ifdimensionless wave frequency (defined simply as one over the spectral peak wave period) defined

as
R u
fp = *g]; (11-2-25)
where

/, = frequency of the spectral peak

then a stationary wave field also implies a fixed relationship between wave frequency and fetch of the form

A

f, = X" (I1-2-26)

where
A, and m, are more empirical coefficients.

(4) Since u. scales the effective rate of momentum transfer from the atmosphere into the waves, all
empirical coefficients in these wave generation laws are expected to be universal values. Unfortunately, there
is still some ambiguity in these values; however, in lieu of any demonstrated improvements over values from
the Shore Protection Manual (1984), those values for fetch-limited wave growth will be adopted here.

(5) Frombasic conservation laws and the dispersion relationship, it is anticipated that any law governing
the rate of growth of waves along a fetch will also form a unique constraint on the rate of growth of waves
through time. If we define dimensionless time as

[= 81 (11-2-27)
M*
where
t = time

additional relationships governing the duration-growth of waves will be

H=251"™ (I1-2-28)
and

fo=n ™ (11-2-29)
where

A, and m, are more “universal” coefficients to be determined empirically.

(6) The form of Equations 11-2-26 and I1-2-27 imply that waves will continue to grow as long as fetch
and time continue to increase. This concept was observed to be incorrect in the early compendiums of data
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(Sverdrup and Munk 1947, Bretschneider 1952), which suggested that a “fully developed” wave height would

evolve under the action of the wind. Available data indicated that this fully developed wave height could be
represented as

H =2 (11-2-30)

where
H_ = fully developed wave height

As =dimensionless coefficient (approximately equal to 0.27)
u = wind speed

Wave heights defined by Equation II-2-30 are usually taken as representing an upper limit to wave growth
for any wind speed.

(7) Inthe 1950’s, researchers began to recognize that the wave generation process was best described
as a spectral phenomenon (e.g. Pierson, Neumann, and James (1955)). Theoreticians then began to reexamine
their ideas on the wave-generation process, with regard to how a turbulent wind field could interact with a
random sea surface. Following along these lines, Phillips (1958) and Miles (1957) advanced two theories
that formed the cornerstone of the understanding of wave generation physics for many years. Phillips’
concept involved the resonant interactions of turbulent pressure fluctuations with waves propagating at the
same speed. Miles’ concept centered on the mean flux of momentum from a “matched layer” above the wave
field into waves travelling at the same speed. Phillips’ theory predicted linear wave growth and was believed
to control the early stages of wave growth. Miles’ theory predicted an exponential growth and was believed
to control the major portion of wave growth observed in nature. Direct measurements of the Phillips’
resonance mechanism indicated that the measured turbulent fluctuations were too small by about an order of
magnitude to explain the observed early growth in waves; however, it was still adopted as a plausible concept.
Subsequent field efforts by Snyder and Cox (1966) and Snyder et al. (1981) have supported at least the
functional form of Miles’ theory for the transfer of energy into the wave field from winds.

(8) From basic concepts of energy conservation and the fact that waves do attain limiting fully
developed wave heights, it is obvious that wave generation physics cannot consist of only wind source terms.
There must be some physical mechanism or mechanisms that leads to a balance of wave growth and
dissipation for the case of fully developed conditions. Phillips (1958) postulated that one such mechanism
in waves would be wave breaking. Based on dimensional considerations and the knowledge that wave
breaking has a very strong local effect on waves, Phillips argued that energy densities within a spectrum
would always have a universal limiting value given by

By - 4817 (11-2-31)
2mn)*

where E(f) is the spectral energy density in units of length squared per hertz and a was understood to be a
universal (dimensionless) constant approximately equal to 0.0081. It should be noted here that energy
densities in this equation are proportional to £ (as can be deduced from dimensional arguments) and that they
are independent of wind speed. Phillips hypothesized that local wave breaking would be so strong that wind
effects could not affect this universal level. In this context, a saturated region of spectral energy densities is
assumed to exist in some region from near the spectral peak to frequencies sufficiently high that viscous
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effects would begin to be significant. This region of saturated energy densities is termed the equilibrium
range of the spectrum.

(9) Kitaigorodskii (1962) extended the similarity arguments of Phillips to distinct regions throughout
the entire spectrum where different mechanisms might be of dominant importance. Pierson and Moskowitz
(1964) followed the dimensional arguments of Phillips and supplemented these arguments, with relationships
derived from measurements at sea. They extended the form of Phillips spectrum to the classical Pierson-
Moskowitz spectrum

E() = egJ- ng—s exp
Q2mn)*

7 -4
0.74| £ 11-2-32
(fu) ] .

where

£, = limiting frequency for a fully developed wave spectrum (assumed to be a function only of wind
speed)

(10) Based on these concepts of spectral wave growth due to wind inputs via Miles-Phillips mechanisms
and a universal limiting form for spectral densities, first-generation (1G) wave models in the United States
were born (Inoue 1967, Bunting 1970). It should be pointed out here that the first model of this type was
actually developed in France (Gelci, Cazale, and Vassel 1957); however, that model did not incorporate the
limiting Pierson-Moskowitz spectral form as did models in the United States. In these models, it was
recognized that waves in nature are not only made up of an infinite (continuous) sum of infinitesimal wave
components at different frequencies but that each frequency component is made up of an infinite (continuous)
sum of wave components travelling in different directions. Thus, when waves travel outward from a storm,
a single “wave train” moving in one direction does not emerge. Instead, directional wave spectra spread out
in different directions and disperse due to differing group velocities associated with different frequencies.
This behavior cannot be modeled properly in parametric (significant wave height) models and understanding
of this behavior formed the basic motivation to model all wave components in a spectrum individually. The
term discrete-spectral model has since been employed to describe models that include calculations of each
separate (frequency-direction) wave component. The equation governing the energy balance in such models
is sometimes termed the radiative transfer equation and can be written as

K

aE(ﬁ%tx,y,t) = o VE(EO.x 0.0 + Y. S(L0.x..0), (11-2-33)
k=1

where

E(f,0,x,y,t) = spectral energy density as a function of frequency (f), propagation direction (0), two
horizontal spatial coordinates (x and y) and time ()

S(f.0,x,y,1), = the k™ source term, which exists in the same five dimensions as the energy density
The first term on the right side of this equation represents the effects of wave propagation on the wave field.
The second term represents the effects of all processes that add energy to or remove energy from a particular

frequency and direction component at a fixed point at a given time.

(11) In the late 1960’s evidence of spectral behavior began to emerge which suggested that the
equilibrium range in wave spectra did not have a universal value for a. Instead, it was observed that o varied
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as a function of nondimensional fetch (Mitsuyasu 1968). This presented a problem to the “first-generation”
interpretation of wave generation physics, since it implied that energies within the equilibrium range are not
controlled by wave breaking. Fortunately, a theoretical foundation already existed to help explain this
discrepancy. This foundation had been established in 1961 in an exceptional theoretical formulation by Klaus
Hasselmann in Germany. In this formulation, Hasselmann, using relatively minimal assumptions, showed
that waves in nature should interact with each other in such a way as to spread energy throughout a spectrum.
This theory of wave-wave interactions predicted that energy near the spectral peak region should be spread
to regions on either side of the spectral peak.

(12) Hasselmann et al. (1973) collected an extensive data set in the Joint North Sea Wave Project
(JONSWAP). Careful analysis of these data confirmed the earlier findings of Mitsuyasu and revealed a clear
relationship between Phillips’ o and nondimensional fetch (Figure 1I-2-21). This finding and certain other
spectral phenomena, such as the tendency of wave spectra to be more peaked than the Pierson-Moskowitz
spectrum during active generation, could not be explained in terms of “first-generation” concepts; however,
they could be explained in terms of a nonlinear interaction among wave components. This pointed out the
necessity of incorporating wave-wave interactions into wave prediction models, and led to the development
of second-generation (2G) wave models. The modified spectral shape which came out of the JONSWAP
experiment has come to bear the name of that experiment; hence we now have the JONSWAP spectrum,
which can be written as

(I1-2-34)

where
o = equilibrium coefficient
o = dimensionless spectral width parameter, with value o, for f<f, and value o, for f>f;
v = peakedness parameter

The average values of the 6 and y parameters in the JONSWAP data set were found to be y=3.3, 6, =0.07,
and ¢, = 0.09. Figure II-2-22 compares this spectrum to the Pierson-Moskowitz spectrum.

(13) Early second-generation models (Barnett 1968, Resio 1981) followed an f° equilibrium-range
formulation since prior research had been formulated with that spectral form. Toba (1978) was the first
researcher to present data suggesting that the equilibrium range in spectra might be better fit by an f*
dependence. Following his work, Forristall et al. (1978); Kahma (1981); and Donelan, Hamilton, and Hu
(1982) all presented evidence from independent field measurements supporting the tendency of equilibrium
ranges to follow an f* dependence. Kitaigorodskii (1983); Resio (1987,1988); and Resio and Perrie (1989)
have all presented theoretical analyses showing how this behavior can be explained by the nature of
nonlinear fluxes of energy through a spectrum. Subsequently, Resio and Perrie (1989) determined that,
although certain spectral growth characteristics were somewhat different between the f* and f* formulations,
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Figure 1I-2-21. Phillips’ constant versus fetch scaled according to Kitaigorodskii. Small-fetch data are
obtained from wind-wave tanks. Capillary-wave data were excluded where possible (Hasselmann et al.
1973)

the basic energy-growth equations were quite similar for the two formulations. The f* formulation is
incorporated into CERC’s WAVAD model, used in its hindcast studies.

(14) Since the early 1980's, a new class of wave model has come into existence (Hasselmann et al. 1985).
This new class of wave model has been termed a third-generation wave model (3G). The distinction between
second-generation and third-generation wave models is the method of solution used in these models. Second-
generation wave models combine relatively broad-scale parameterizations of the nonlinear wave-wave
interaction source term combined with constraints on the overall spectral shape to simulate wave growth.
Third-generation models use a more detailed parameterization of the nonlinear wave-wave interaction source
terms and relax most of the constraints on spectral shape in simulating wave growth. Various third-generation
models are used around the world today; however, the third-generation model is probably the WAM model.
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Figure 1l-2-22. Definition of JONSWAP parameters for spectral
shape

(15) Part of the motivation to use third-generation models is related to the hope that future simulations
of directional spectra can be made more accurate via the direct solution of the detailed source-term balance.
This is expected to be particularly important in complex wave generation scenarios where second-generation
models might not be able to handle the general source term balance. However, recent research by Van
Vledder and Holthuisen (1993) has demonstrated rather convincingly that the “detailed balance” equations
in the WAM (WAMDI Group 1988)model at this time still cannot accurately simulate waves in rapidly
turning winds. Hence, there remains much work to be done in this area before the performance of third-
generation models can be considered totally satisfactory.

(16) First-generation models that have been modified to allow the Phillips equilibrium coefficient to vary
dynamically (Cardone 1992) , second-generation models (Resio 1981; NORSWAM, Hubertz 1992), and
third-generation models (Hasselmann et al. 1985) have all been shown to produce very good predictions and
hindcasts of wave conditions for a wide range of meteorological situations. These models are recommended
in developing wave conditions for design and planning situations having serious economic or safety
implications, and should be properly verified with local wave data, wherever feasible. This is not meant to
imply that wave models can supplant wave measurements, but rather that in most circumstances, these models
should be used instead of parametric models.

b.  Wave prediction in simple situations. In some situations it is desirable to estimate wave conditions
for preliminary considerations in project designs or even for final design in cases where total project costs
are minimal. In the past, nomograms have played an important role in providing such wave information.
However, with today’s proliferation of user-friendly computer software such as the ACES Program, reliance
on nomograms is discouraged. ACES will assist a user in his or her calculations, will facilitate most
applications, and will help avoid most potential pitfalls related to misuse of wave prediction schemes. In spite
of this warning and advice to use ACES, conventional prediction methods will be discussed here in order to
provide such information for appropriate applications.
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(1) Assumptions in simplified wave predictions.

(a) Deep water. There are three situations in which simplified wave predictions can provide accurate
estimates of wave conditions. The first of these occurs when a wind blows, with essentially constant
direction, over a fetch for sufficient time to achieve steady-state, fetch-limited values. The second idealized
situation occurs when a wind increases very quickly through time in an area removed from any close
boundaries. In this situation, the wave growth can be termed duration-limited. It should be recognized that
this condition is rarely met in nature; consequently, this prediction technique should only be used with great
caution. Open-ocean winds rarely can be categorized in such a manner to permit a simple duration-growth
scenario. The third situation that may be treated via simplified prediction methods is that of a fully developed
wave height. Knowledge of the fully developed wave height can provide valuable upper limits for some
design considerations; however, open-ocean waves rarely attain a limiting wave height for wind speeds above
50 knots or so. Equation II-2-30 provides an easy means to estimate this limiting wave height.

(b) Wave growth with fetch. Figure II-2-3 shows the time required to accomplish fetch-limited wave
development for short fetches. The general equation for this can be derived by combining the JONSWAP
growth law for peak frequency, an equation for the fully developed frequency, and the assumption that a local
wave field propagates at a group velocity approximately equal to 0.85 times the group velocity of the spectral
peak. This factor accounts for both frequency distribution of energy in a JONSWAP spectrum and angular
spreading. This yields

t o =7723 — 2 (11-2-35)

x,u 034 0.33

where

t., = time required for waves crossing a fetch of length x under a wind of velocity u to become fetch-
limited

Equation II-2-35 can be used to determine whether or not waves in a particular situation can be categorized
as fetch-limited.

The equations governing wave growth with fetch are

1
™= 413 x 102« | £X]2
u, M*z
and
1
gT, X|3
S r - 0.651 [g—z] 3 (11-2-36)
u, u
2
c. - =
D =,
UlO

C,, = 0.001(1.1 +0.035 U,,)
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where
X = straight line fetch distance over which the wind blows

H,, = energy-based significant wave height
C, = drag coefficient
U,, = wind speed at 10 m elevation
u. = friction velocity
See Demirbilek, Bratos, and Thompson (1993) for more details.

Fully developed wave conditions in these equations are given by

gH,
2* = 2.115 x 10?
u*
and (I1-2-37)
T
% _ 9308 x 10
u

*

Equations governing wave growth with wind duration can be obtained by converting duration into an
equivalent fetch given by

3
&% - 523 x 107 (&J 2 (I1-2-38)

u, u,

where ¢ in this equation is the wind duration. The fetch estimated from this equation can then be substituted
into the fetch-growth equations to obtain duration-limited estimates of wave height and period.

(c) Narrow fetches. Early wave prediction nomograms included modifications to predicted wave
conditions based on a sort of aspect ratio for a fetch area, based on the ratio of fetch width to fetch length.
Subsequent investigations (Resio and Vincent 1979) suggested that wave conditions in fetch areas were
actually relatively insensitive to the width of a fetch; consequently, it is recommended here that fetch width
not be used to estimate an effective fetch for use in nomograms or the ACES Program. Instead, it is
recommended that the straightline fetch be used to define fetch length for applications.

(d) Shallow water. Many studies suggest that water depth acts to modify wave growth. Bottom friction
and percolation (Putnam 1949, Putnam and Johnson 1949, Bretschneider and Reid 1953) have been
postulated as significant processes that diminish wave heights in shallow water; however, recent studies in
shallow water (Jensen 1993) indicate that fetch-limited wave growth in shallow water appears to follow
growth laws that are quite close to deepwater wave growth for the same wind speeds, up to a point where an
asymptotic depth-dependent wave height is attained. In light of this evidence, it seems prudent to disregard
bottom friction effects on wave growth in shallow water. Also, evidence from Bouws et al. (1985) indicates
that wave spectra in shallow water do not appear to have a noticeable dependence on variations in bottom
sediments. Consequently, it is recommended that deepwater wave growth formulae be used for all depths,
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with the constraint that no wave period can grow past a limiting value as shown by Vincent (1985). This
limiting wave period is simply approximated by the relationship

1
T,=~9.78 ( 1] 2 (11-2-39)

g

In cases with extreme amounts of material in the water column (for example sediment, vegetation, man-made
structures, etc.), it is likely that the dissipation rate of wave energy will become very large. In such cases,
Camfield’s work (1977) may be used as a guideline for estimating frictional effects on wave growth and
dissipation; however, it should be recognized that little experimental evidence exists to confirm the exact
values of these dissipation rates.

(2) Prediction of deepwater waves from nomograms. Figures 1I-2-23 through II-2-26 are wave
prediction nomograms under fetch-limited and duration-limited conditions. The curves in these nomograms
are based on Equations II-2-30 and 1I-2-36 through 11-2-38 presented previously in this section. The
asymptotic upper limits in both cases provide information on the fully developed wave heights as a function
of wind speed. The same information can be obtained more expediently via the ACES Program.
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Figure 11-2-23.  Fetch-limited wave heights
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Figure ll-2-24. Fetch-limited wave periods (wind speeds are plotted in increments of 2.5 m/s)

(3) Prediction of shallow-water waves. Rather than providing separate nomograms for shallow-water
wave generation, the following procedure is recommended for estimating waves in shallow basins:

® Determine the straight-line fetch and over-water wind speed.

®  Using the fetch and wind speed from (1), estimate the wave height and period from the deepwater
nomograms.

®  Compare the predicted peak wave period from (2) to the shallow-water limit given in Equation II-2-
39. Ifthat wave period is greater than the limiting value, then reduce the predicted wave period to
this value. The wave height may be found by noting the dimensionless fetch associated with the
limiting wave period and substituting this fetch for the actual fetch in the wave growth calculation.

® [f the predicted wave period is less than the limiting value, then retain the deepwater values from

(2).
® [fwave height exceeds 0.6 times the depth, wave height should be limited to 0.6 times the depth.

c¢.  Parametric prediction of waves in hurricanes.
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Figure 11-2-25. Duration-limited wave heights (wind speeds are plotted in increments of 2.5 m/s)

(1) Asshown Table I1-2-2, waves from tropical storms, hurricanes, and typhoons represent a dominant
threat to coastal and offshore structures and activities in many areas of the world. In this section, the generic
term “hurricane” refers to all of these classes of storms. As pointed out previously in this chapter, the only
distinction between tropical storms and hurricanes/typhoons is storm intensity (and somewhat the storm’s
degree of organization). The only distinction between hurricanes and typhoons is the point of origin of the
storm.

(2) Spectral models have been shown to provide accurate estimates of hurricane wave conditions, when
driven by good wind field information (Ward, Evans, and Pompa 1977; Corson et al. 1982; Cardone 1992;
Hubertz 1992). Numerical spectral models can be run on most available PC’s today, so there is little
motivation not to use such models in any application with significant economic and/or safety implications.
However, certain situations remain in which a parametric hurricane wave model may still play an important
role in offshore and coastal applications. Therefore, some documentation of parametric models is still
included in this manual.

(3) In general, parametric prediction methods tend to work well when applied to phenomena that have
little or no dependence on previous states (i.e. systems with little or no memory). A good example of such
a physical system is a hurricane wind field. It has been demonstrated (Ward et al. 1977) that hurricane wind
fields can be well-represented by a small number of parameters, since winds in a hurricane tend always to
remain very close to a dynamic balance with certain driving mechanisms. On the other hand, waves depend
not only on the present wind field but also on earlier wind fields, bathymetric effects, pre-existing waves from
other wind systems, and in general on the entire wave-generation process over the last to 12 to 24 hr.
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Figure 11-2-26.  Duration-limited wave periods
Thus, parametric models do not work well for all hurricanes, but do provide accurate results when the
following criteria are met for an interval of about 12 to 18 hr prior to the application of a parametric model:

® Hurricane intensity (maximum velocity) is relatively constant.

®  Hurricane track is relatively straight.

®  Hurricane forward speed is relatively constant.

®  Hurricane is not affected by land or bathymetric effects.

® No strong secondary wind and/or wave systems affect conditions in the area of interest.

(4) In certain situations, where there is a lack of detail on the actual characteristics of a hurricane (such
as in hurricane forecasts, older historical storms, hurricanes in some regions of the world where
meteorological data are sparse), parametric models may provide accuracies equal to those of spectral models,
provided that land effects and bathymetric effects are minimal. However, even when these criteria are met,
situations where secondary wind and/or wave systems can seriously affect wave conditions in an area should
be avoided. Examples of this occur when large-scale pressure gradients (monsoonal or extratropical)
significantly affect the shape and/or wind distribution of a hurricane. Winds and waves in such a storm will
not be distributed in a manner consistent with the assumptions made in this section.
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(5) Young (1987) developed a parametric wave model based on results from simulations with a
numerical spectral model. His results show that there is a strong dependence of wave height on the relative
values of maximum wind speed and forward storm velocity (Figure 11-2-27). These results can be used to
estimate the maximum value of H,,,in a hurricane. The distribution of wave heights within a hurricane is also
affected by the ratio of maximum wind speed to forward storm velocity; however, in an effort to simplify
applications here, only one chart is presented (Figure 11-2-28). This chart is characteristic of storms with
strong winds (maximum wind speed greater than 40 m/sec) and slow-to-moderate forward velocities (Vless
than 12 m/sec).
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Figure 11-2-27. Maximum value of H,, in a hurricane as a function of V,

' .ax @and forward velocity of
storm (Young 1987)

I1-2-3. Coastal Wave Climates in the United States.

a. Introduction.

(1) Coastal wave climates around U.S. coastlines are extremely varied. Past studies such as that by
Thompson (1977) have relied primarily on measured wave conditions in coastal areas to specify nearshore
wave climates. However, we now know that coastal wave heights can vary markedly as a function of distance
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Figure 11-2-28. Values of H,,/H,,, ..., plotted relative to center of hurricane (0,0)
offshore, degree of coastal sheltering, and various wave transformation factors. This means that measured
waves in nearshore areas represent site-specific data. Also, even though measurements in U.S. waters have
proliferated, they still do not offer comprehensive coverage. Because of these inherent difficulties in using
measurements for a national climatology, hindcast information is used in this section to describe a general
coastal wave climate. This is not meant to be interpreted that such models produce information that is as
accurate as wave gauges or in any other way superior to wave measurements; but merely that they represent
a consistent, comprehensive database for examining regional variations. In the near future, data assimilation
methods will combine measurements and hindcasts into a unified database.

(2) In this section, typical wave conditions and storm waves for each of four general coastal areas will
be described, along with some of the important meteorological systems that produce these waves. The areas
covered here include all coastal areas within the United States, except for Alaska and Hawaii. The
wave information presented in Tables I1-2-3 through I1-2-6 is based on numerical hindcast data provided by
CERC’s Wave Information Study (WIS). WIS is a multi-year study to develop wave climates for U.S. coastal
regions. This information is not yet available for Alaskan and Hawaiian coastal areas; thus, these areas are
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omitted in the presentations shown here. It should be noted that this information is very generalized. Waves
at a specific site can vary from these estimates due to many site-specific factors, such as: variations in
exposure to waves from different directions (primarily related to offshore islands and coastal orientation),
bathymetric effects (refraction, shoaling, wave breaking, diffraction, etc.), interactions with currents near
inlets or river mouths, and variations in fetches for wave generation.

(3) Figure I1-2-29 provides the locations of reference sites along U.S. coastlines that will be used in
subsequent parts of this section. A nominal depth of 20 m is assumed for these sites.
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Figure 11-2-29. Reference locations for Tables II-2-3 through I1-2-6

b.  Atlantic coast.

(1) Table II-2-3 provides wave information for the Atlantic coast. Mean wave heights are fairly
consistent along the entire Atlantic coast (0.7 to 1.3 m); however, the overall distribution suggests a subtle
multi-peak pattern with maxima at Cape Cod (1.3 m) and Cape Hatteras (1.2 m) and possibly a third peak in
the vicinity of Cape Canaveral (1.1 m). These peaks are superimposed on a pattern of slight overall
decreasing wave heights as one moves from north to south. Mean wave periods exhibit a relatively high
degree of consistency along the entire Atlantic coast, varying only between 6.4 and 7.4 sec, except along the
extreme southern part of Florida. The modal direction of the waves is taken here as the 22.5-deg direction
class with the highest probability and appears to be primarily a function of coastal exposure.
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EXAMPLE PROBLEM II-2-7

FIND:

The significant wave height at the end of this fetch, assuming that the duration of the wind is sufficient to
generate fetch-limited waves (from Figure I1-2-2, this is found to be greater than about 1.25 hr).

GIVEN:
A constant wind speed of 15 m/sec over a fetch of 10 km in a basin with a constant depth of 3 m. (Note: as

pointed out in the previous section on winds, wind speeds tend to increase with fetch over a fetch of this size, so
care should be taken in estimating this wind speed)

SOLUTION:

OPTION 1 - Use ACES

OPTION 2 - From Figure 11-2-24 the fetch-limited peak wave period is about 2.7 sec, from Equation 11-2-39,
the limiting wave period in 3 m is 5.4 sec; therefore, T, = 2.7 sec and H,,,= 1.0 m (deepwater values).

EXAMPLE PROBLEM II-2-8

FIND:

The significant wave height at the end of this fetch.
GIVEN:

A constant wind speed of 25 m/sec over a fetch of 50 km in a basin with a constant depth of 1.6 m.
SOLUTION:

OPTION 1 - Use ACES

OPTION 2 - From Figure 11-2-24, the fetch-limited peak wave period is about 5.8 sec, from Equation 11-2-39,
the limiting wave period in 1.6 m is 4.0 sec; therefore, the waves stopped growing at this limit. This corresponds
to a fetch of 20 km at this wind speed,; thus, the final values of 7, and H,,, are 4.0 sec and 2.1 m (using the 20-km

fetch and 25-m/sec wind speed in Figure 11-2-23). However, this value exceeds 0.6 times the depth, so the final
answer should be 0.8 m.
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(2) These results appear consistent with the mean storminess expected in these Atlantic coastal regions.
In the northern portion of the Atlantic coast, the primary source of large waves is migratory extratropical
cyclones. Between storm intervals in this region, waves come primarily from swell propagating from storms
moving away from the coast. Due to this direction of storm movement, the swell from these storms is usually
not very large (less than 2 m). As one moves southward past Cape Hatteras, waves from high-pressure
systems (both migratory and semipermanent) begin to become dominant in the wave population. Once south
of Jacksonville, the wave climate is typically dominated by easterly winds from high pressure systems, with
a secondary source of swell from northeasters. Farther south, as one approaches Miami, the Bahamas provide
considerable shelter for waves approaching from the east. In coastal areas without significant swell, sea
breeze winds can play a significant role in producing coastal waves during afternoon periods. This situation
occurs over much of the U.S. east coast during intervals of the year.

(3) The 90™ percentile wave heights can be considered as representative of typical large wave
conditions. As can be seen here, this wave height varies from 1.9 to 2.4 m along the New England region
down to 1.4 to 1.9 m along the Florida coast. As was seen in the distribution of mean wave heights, the
overall pattern appears to have maxima at Cape Cod (2.4 m), Cape Hatteras (2.1 m), and Cape Canaveral
(1.9 m). The associated periods are very consistent along most of the Atlantic coast (8.5 to 9.9 sec) except
for the southern half of Florida, where the periods are somewhat lower (6.2 to 7.7 sec). Directions of the
90™-percentile wave reflect the general coastal orientation.

(4) Extreme waves along the Atlantic coast are often produced by both intense extratropical storms and
tropical storms. Table II-2-3 does not provide any information that extends into the return period domain
dominated by tropical storms; consequently, this table can be regarded as actually providing information only
on extratropical storms. Since this table is not intended to be used directly for any coastal design
considerations, information on large-return-period storms is specifically excluded.

(5) The 5-year wave heights presented in Table II-2-3 can be considered as representing typical large
storms that might affect short-term projects (beach nourishment, dredging operations, sand bypassing, etc.).
Values of the 5-year wave height range from generally greater than 6 m north of Long Island to only 4.2 m
in the Florida Keys. Again, north to south decreasing maxima appear in the regions of Cape Cod (6.7 m),
Cape Hatteras (5.9 m), and Cape Canaveral (4.9 m). Associated wave periods are generally in the range of
11 to 13 sec, except for the Florida Keys site, where this period is only 9.5 sec.

(6) Various types of extratropical storms have wreaked havoc along different coastal arecas. These
storms range from “bombs” (small, intense, rapidly developing storms) to large almost-stationary storms
(developing typically after a change in the large-scale global circulation). Bombs produce higher wind speeds
(sustained winds can exceed 70 knots) but due to fetch and duration considerations, the larger, slower-moving
storms produce larger wave heights (a measured H,,, greater than 17 m south of Nova Scotia in the Halloween
Storm). Other examples of classic storms along the U.S. east coast include the Ash Wednesday Storm of
1962 (affecting mainly the mid-Atlantic region), the Blizzard of 1978 (affecting mainly the northeastern
states), and the Storm of March 1993, which affected most of the U.S east coast. This last storm has been
called the “Storm of the Century” by some; however, it is by no means the worst storm in terms of waves for
most areas along the east coast in this century. In fact, along much of the Atlantic coast, the wind direction
was toward offshore; consequently, there was almost no wave action at the coast in many locations. Farther
offshore the situation was considerably different and many ships and boats were lost.

(7) Hurricanes can also produce extreme wave conditions along the coast. Particularly at the coast itself
where storm surges of 10 ft or more can accompany waves, hurricane waves represent an extreme threat to
both life and property. An excellent source of hurricane information is the HURDAT file at the National
Climatic Center in Asheville, NC. This file (available on magnetic tape or PC diskette format) contains storm
tracks, maximum wind speeds, central pressures, and other parameters of interest for all hurricanes affecting
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the United States since 1876. The effects of Hurricanes Hugo in 1988 and Andrew in 1992 have shown the
tremendous potential for coastal destruction that can accompany these storm systems in southern reaches of
the Atlantic coast. The effects of the Hurricane of 1933 in New England and Hurricane Bob in 1990 show
that even farther north, the risk of hurricanes cannot be neglected.

c.  Gulf of Mexico.

(1) Table II-2-4 shows the same information for the U.S. Gulf coast as was given in Table II-2-3 for the
Atlantic coast. Mean wave heights for this coast are often considered to be considerably lower than those on
the Atlantic coast; however, as can be seen in this table, this is not evident in the wave data. In fact, mean
wave heights near Brownsville are larger than anywhere on the Atlantic coast. The reason for this is that the
mean wind direction in this location is directed toward land, whereas, along the Atlantic coast, the mean wind
direction is directed away from land except for areas south of Jacksonville, FL. Mean wave heights generally
decrease eastward to the Appalachicola area and then remain fairly constant southward to the Florida Keys.

(2) Many of the larger waves in the Gulf of Mexico are generated by storms that are centered well to
the north over land. Thus, large waves can be experienced at offshore sites even when conditions along the
coast are quite calm. Typical day-to-day wave conditions in many coastal areas are produced by a
combination of relatively small synoptic-scale winds and sea-breeze circulations. As noted in Table 11-2-2
in this section, these waves are rarely very large. At times, the Gulf of Mexico comes under the influence
of large-scale high pressure systems, with winds blowing from east to west across much of the Gulf. These
winds are primarily responsible for the higher wave conditions in the western Gulf. Due to the lack of strong
storms centered within the Gulf, there is little or no swell reaching Gulf shorelines, with the notable exception
being swell from remote tropical systems. Consequently, except for the extreme western Gulf of Mexico,
mean wave periods tend to be somewhat smaller than those along the Atlantic coast (4 to 6 sec).

(3) The 90™ percentile wave heights indicate that typical large wave conditions along the coast are only
about 50 percent larger than the mean wave heights (compared to about a 100-percent factor for the Atlantic
coast). This is consistent with the idea that the Gulf of Mexico is, in fact, a calmer basin than the Atlantic.
These wave heights in the Gulf vary from a maximum of 1.5 m near Brownsville to 1.2 m along Florida’s
west coast. Associated wave periods range from 6 to 8 sec.

(4) Values of the 5-year wave heights in the Gulf of Mexico vary from 3.2 m along the west coast of
Florida to 4.6 m near Brownsville. Associated wave periods vary between 9 and 10.5 sec. Some of the higher
non-tropical waves in the Gulf of Mexico are generated by wind systems called “Northers.” Since these
winds blow out of the north, they typically do not create problems at the coast itself, but can produce large
waves at offshore sites. Occasionally an extratropical cyclone will develop within the Gulf. One example,
the intense storm of 10-13 March, 1993 (the so-called “Storm of the Century”), produced high surges and
large waves along extensive portions of Florida’s west coast. Damages and loss of life from this storm
demonstrated that, although rare, strong extratropical storms can still be a threat to some Gulf coastal areas.

(5) The primary source of extreme waves in the Gulf of Mexico is hurricanes. Hurricanes Betsy (1965),
Camille (1969), Carmen (1975), Frederick (1979), Alicia (1985), and Andrew (1992) have clearly shown the
devastating potential of these storms in the Gulf of Mexico. Even though shallow-water effects may diminish
coastal wave heights from the values listed in Table 11-2-2, wave conditions are still sufficient to control
design and planning considerations for most coastal and offshore structures/facilities in the Gulf.
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d  Pacific coast.

(1) Table II-2-5 provides information for the Pacific coast that is comparable to that presented in
Tables I1-3-3 and I1-2-4 for the Atlantic and Gulf of Mexico coasts, respectively. The Pacific coast is very
different from the east coast in that wave-producing storms within the Pacific Ocean are travelling toward
this coast. This means that the west coast typically has a much richer source of swell waves tha do other
U.S. coastal areas. As can be seen by comparison to the Atlantic coast results (Table 11-2-3), this results in
higher wave conditions along the Pacific coast, with mean wave heights ranging from 2.5 m near the Mexican
border to 3.2 m near the Canadian border. This difference is also reflected in the mean periods along these
coasts, which vary from 9.6 to 12.1 sec. During (Northern Hemisphere) summer months, storm tracks usually
move far to the north and storms are less intense. Consequently, swell from mid-latitude storms in the
Northern Hemisphere diminish in size and frequency, allowing swell from tropical storms spawned off the
west coast of Mexico and from large winter storms in the Southern Hemisphere to become important elements
in the summer wave climate.

(2) Typical winter storm tracks move storm centers inland in the region from northern California to the
Canadian border. Hence, large waves in these regions frequently come in the form of local seas. South of
San Francisco, local storms strike the coast with less frequency; thus, many of the large waves in this area
arrive in the form of swell. Many notable exceptions to this general rule of thumb can be found in the late
1970’s and 1980’s, however. In particular, the storm of January 1989 moved across the California coast in
the vicinity of Los Angeles and caused much damage to southern California coastal areas.

(3) The 90™ percentile wave heights along the Pacific coast are about twice their Atlantic coast
counterparts. In the southern California region, these values are typically in the 3.9- to 4.2-m range. As one
moves northward, the 90" percentile wave height increases to a maximum of about 5.4 m along the coast of
Washington. Periods associated with these waves tend to be quite long, ranging between 11 and 14 sec.

(4) The 5-year wave heights in the southern California region are comparable to those found along the
New England coast on the Atlantic (6.8-6.9 m compared to 6.7 m). However, associated periods are
considerably longer (16.8 sec compared to 12-13 sec). As one moves northward, these wave heights increase
to levels greater than 10 m along much of the coast north of the California-Oregon border. Periods of these
large waves tend to fall in the 14- to 16-sec range.

(5) Although many studies have dismissed the importance of tropical storms to the extreme wave
climate along the Pacific coast, at least one tropical storm has moved into the Los Angeles basin during this
century, suggesting that this threat is not negligible. Given the curvature of the coast and the water
temperatures north of Point Conception, it is unlikely that tropical storms can produce a significant threat at
coastal sites north of this point; however, south of this point it is important to include tropical storms in any
design and planning considerations.

e. Great Lakes.

(1) Table II-2-6 provides comparable information for the Great Lakes as provided for previous coastal
areas in Tables II-2-3 through II-2-5. Wave conditions within the Great Lakes are strongly influenced by
fetches aligned with the dominant directions of storm winds. These winds are mainly produced by various
extratropical storms moving across the Great Lakes region. Table II-2-6 compares the largest 50-year (return
period) wave heights for each lake. Since strong storms are not very frequent in late spring through early
autumn, this interval is usually relatively calm along most shorelines. During the period from mid-autumn
until ice effects on the lakes reduce the wave generation potential, the largest waves are generated. Again
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in the spring, after the ice has thawed, large waves (although usually significantly smaller than waves in
autumn) can be generated and can affect coastal areas.

(2) One of'the issues of critical concern in the Great Lakes is that of mean lake level. These levels have
fluctuated considerably through recorded history in response to periods of low and high precipitation in the
general geographic area. Critical design criteria for many Great Lakes coastal areas are defined by the
superposition of high wave conditions (generated by extratropical storms) on top of high mean lake levels
and storm surges.
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lI-2-5. Definitions of Symbols

o Equilibrium coefficient

y Peak enhancement factor used in the JONSWAP spectrum for fetch-limited seas
AT Air-sea temperature difference [deg °C]

0,0 Measured wind direction in standard meteorological terms (Equation 11-2-14) [deg]

0... Measured wind direction in a Cartesian system with the zero angle wind blowing
toward the east (Equation 11-2-14) [deg]

A Dimensionless constant in determining the height of the atmospheric boundary
layer (Equation 11-2-12)

Ars Dimensionless empirical coefficients used in empirical wave predictions

Pa Mass density of air [force-time?/length?]

. Mass density of water (salt water = 1,025 kg/m® or 2.0 slugs/ft’; fresh water =
1,000kg/m’ or 1.94 slugs/ft’) [force-time*/length*]

o Dimensionless spectral width parameter

T Wind stress [force/length?]

7 Dimensionless universal function characterizing the effects of thermal stratification

® Angular velocity of the earth (= 0.2625 rad/hr = 7.292x10 red/sec)

A Scaling parameter in the Holland wind model [length]

B Dimensionless parameter that controls the peakedness of the wind speed
distribution in the Holland wind model

c Particle velocity [length/time]

Cp Coefficient of drag for winds measured at 10-m [dimensionless]

Cp, Coefficient of drag for winds measured at level z [dimensionless]

e Base of natural logarithms (= 2.718)

E® Spectral energy density [length/hertz]

f Coriolis parameter (=2 w sin ¢ = 1.458 x 10" sin @), where ¢ is geographical
latitude [sec ' ]. Also, f= frequency [Hz] = m

Jy Peak frequency of the spectral peak

£ Limiting frequency for a fully developed wave spectrum (Equation 11-2-32)

g Gravitational acceleration [length/time?]

h Height of the boundary layer (Equation 11-2-12) [length]
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11-2-70

Dimensionless wave height (Equation 11-2-22)

Height of the land barrier [length]

Energy-based significant wave height [length]

Stable wave height (Equation 11-4-14) [length]

Fully developed wave height (Equation 11-2-30) [length]

Dimensionless von Karman’s constant (approximately equal to 0.4). Also, k=

wave number [length'] defined as = % where L = wave length [length]
Parameter that represents the relative strength of thermal stratification effects
[length]

Dimensionless empirical exponents used in empirical wave predictions

The subscript 0 denotes deepwater conditions

Pressure at radius 7 of a storm [force/length?]

Central pressure in the storm [force/length’]

Ambient pressure at the periphery of the storm [force/length?]

Arbitrary radius [length]

Radius of curvature of the isobars [length]

Ratio of over water windspeed, U, to over land windspeed, U, as a function of over
land windspeed (Figure 11-2-7)

Distance from the center of the storm circulation to the location of maximum wind
speed (Equation I1-2-20) [length]

Rossby radius of deformation (Equation 11-2-1) [length]

Amplification ratio (Figure I1-2-8), ratio of wind speed accounting for effects of air-
sea temperature difference to wind speed over water without temperature effects

Duration [time]

Air temperature [deg C]

Limiting wave period (Equation 1I-2-39) [time]

Water temperature [deg C]

Time required for waves crossing a fetch (Equation 1I-2-35) [time]
Wind speed [length/time]

Estimated wind speed of any duration [length/time]

Cyclostrophic approximation to the wind speed [length/time]
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U, Fastest mile wind speed [length/time]

U, Geostrophic wind speed (Equation 11-2-10) [length/time]

U, Gradient wind speed (Equations II-2-11 and II-2-18) [length/time]

U, Wind speed over land [length/time]

U, o Maximum velocity in the storm (Equation 11-2-21) [length/time]

U, Wind speed of any duration [length/time]

Uy Wind speed over water [length/time]

U, Wind speed at height z above the surface (Equation I1-2-3) [length/time]
u, Wind friction velocity [length/time]

U. Wind friction velocity [length/time]

W Wind speed accounting for effects of air-sea temperature difference [length/time]
Wy Wind speed over water without temperature effects [length/time]

X Straight line distance over which the wind blows [length]

z, Roughness height of the surface [length]
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Chapter I1-3
Estimation of Nearshore Waves

11-3-1. Introduction

a. Background.

(1) Coastal engineering considers problems near the shoreline normally in water depths of less than 20 m.
Project designs usually require knowledge of the wave field over an area of 1-10 km? in which the depth may
vary significantly. Additionally, study of shoreline change and beach protection frequently requires analysis
of coastal processes over entire littoral cells, which may span 10-100 km in length. Wave data are generally
not available at the site or depths required. Often a coastal engineer will find that data have been collected
or hindcast at sites offshore in deeper water or nearby in similar water depths. This chapter provides
procedures for transforming waves from offshore or nearby locations to nearshore locations needed by the
engineer.

(2) Understanding the processes that affect coastal waves is essential to coastal engineering. Waves
propagating through shallow water are strongly influenced by the underlying bathymetry and currents
(Figure I1-3-1). A sloping or undulating bottom, or a bottom characterized by shoals or underwater canyons,
can cause large changes in wave height and direction of travel. Shoals can focus waves, in some cases more
than doubling wave height behind the shoal. Other bathymetric features can reduce wave heights. The
magnitude of these changes is particularly sensitive to wave period and direction and how the wave energy
is spread in frequency and direction (Figure II-3-2). In addition, wave interaction with the bottom can cause
wave attenuation. The influence of bathymetry on local wave conditions cannot be overstated as a critical
factor in coastal engineering design.

(3) Wave height is often the most significant factor influencing a project. Designing with a wave height
that is overly conservative can greatly increase the cost of a project and may make it uneconomical.
Conversely, underestimating wave height could result in catastrophic failure of a project or significant
maintenance costs. Approaches for transforming waves are numerous and differ in complexity and accuracy.
Consequently transformation studies require careful analysis. They are but one part of selecting project
design criteria, which will be treated in Part 11-9.

(4) Wave transformation across irregular bathymetry is complex. Simplifying assumptions admit valid
and useful approximations for estimating nearshore waves. After this introduction, a basic principles section
provides an overview of the theoretical basis for wave transformation analyses, followed by development of
a simple method for refraction and shoaling estimates. Transformation of irregular waves is then discussed.
Next, advanced wave transformation models currently used by the Corps of Engineers are discussed. A final
section provides guidance on selecting the approach used in calculating wave transformation. This chapter
is primarily directed at open coast wave problems excluding structures such as breakwaters or jetties.
Analyses involving structures are provided in Part II-7.

b. Practical limitations.

(1) The purpose of this chapter is to provide methods for estimating waves at one site given information
at another. The assumption made is that the wave information used as input to the analysis is characteristic
of the waves that would propagate to the site. In each case, the engineer should assure that there is no
limitation of fetch, sheltering of waves, or oddness of bathymetry that would make selection of the input site
inappropriate.
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Figure 1I-3-1. Waves propagating through shallow water influenced by the underlying bathymetry and
currents

(2) For most of the open U.S. coastline, Wave Information Study data or data from gauges provide
adequate spacing of sites along the coast to give estimates of the wave climate that can be used as input to
nearshore transformation studies. In other places or for simulation of a specific event, a special hindcast of
the deepwater wave climate may be required to provide input for a transformation analysis.

¢. Importance of water level. Near the coast, variable water depths can produce major variations in
wave conditions over short distances. The important physical parameter is the depth of the water on which
the surface waves are traveling. In nature, water depth is not a constant: it varies with tide stage, hurricane
or extratropical storm surge, or for a variety of other reasons (Part II-5). These variations in water level
influence wave breaking. Hence, any study of wave transformation must account for expected water levels
for the site and the situation of interest.
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Figure 11-3-2. Amplification of wave height behind a shoal for waves with different
spreads of energy in frequency and direction

d. Roleofgauging. The procedures described here are needed because long-term site-specific data often
do not exist. If time and funding are available, a short-term gauging program should be considered. A
gauging program can help in two ways:

(1) It may provide a simple statistically based transformation procedure.
(2) It can be used to validate/calibrate a numerical model as a transformation procedure for the project.

Even a few months of gauge data can be a significant complement to any wave-transformation analysis.
Short-term gauging is generally not useful in providing, by itself, a design-wave height.

e. Physical modeling. This chapter emphasizes calculation procedures for estimating nearshore waves.
However, some sites are so complicated that a physical model of the site may be required to determine the
wave conditions. Physical modeling is a well-established procedure for analysis of wave propagation and
breaking effects and is particularly useful in analysis of the effects of structures on the wave field. Physical
modeling is not useful for evaluating bottom friction or percolation effects or inclusion of wind inputs.
Because of scaling limitations and costs, physical models are generally used for small areas (a few square
kilometers or less). If strong currents transverse to a wave field are present, such as at a tidal inlet, a physical
model may be the only dependable method for estimating the wave field.
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lI-3-2. Principles of Wave Transformation

a. Introduction.

(1) In this section, the scientific principles governing the transformation of waves from deep water to
shallow will be presented in sufficient detail to highlight critical assumptions and simplifications.
Unfortunately, the problem is so complex that detailed computations require use of complicated numerical
models whose background and implementation are beyond the scope of the Coastal Engineering Manual.
This chapter provides the principles of wave transformation, a simplified approach, and an introduction to
three numerical models used by the Corps of Engineers.

(2) Processes that can affect a wave as it propagates from deep into shallow water include:
(a) Refraction.

(b) Shoaling.

(c) Diffraction.

(d) Dissipation due to friction.

(e) Dissipation due to percolation.

(f) Breaking.

(g) Additional growth due to the wind.

(h) Wave-current interaction.

(i) Wave-wave interactions

The first three effects are propagation effects because they result from convergence or divergence of waves
caused by the shape of the bottom topography, which influences the direction of wave travel and causes wave
energy to be concentrated or spread out. Diffraction also occurs due to structures that interrupt wave
propagation. The second three effects are sink mechanisms because they remove energy from the wave field
through dissipation. The wind is a source mechanism because it represents the addition of wave energy if
wind is present. The presence of a large-scale current field can affect wave propagation and dissipation.
Wave-wave interactions result from nonlinear coupling of wave components and result in transfer of energy
from some waves to others. The procedures presented will stop just seaward of the surf zone, which is treated
in Part II-4, “Surf Zone Hydrodynamics.”

b.  Wave transformation equation.

(1) The general problem of wave transformation will be introduced in terms of the concept of directional
wave spectra discussed in Part II-1 and II-2. Adopting the notation of Part II-2, consider a directional
spectrum E(x,y,t,f,6) where f,@ represents a particular frequency-direction component, x,y represents a location
in geographic space, and ¢ represents time. The waves are propagating over a region with varying water
depths with no current. Water level will not be time-dependent in the following analyses. Structures are not
considered. The general equation used to estimate wave transformation is the radiative transfer equation
introduced in Part II-2.

%fﬁe) + Vo [Caey)) Eytf0)] = S, + S, + Sy, + Sp + S,

A B ¢c D E F G

11-3-1)
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(2) Although multidimensional, this equation is fundamentally simple. Term A represents the temporal
rate of change of the spectrum, term B represents the propagation of wave energy, term C represents inputs
from the wind, term D represents the redistribution of wave energy between different wave components that
arise from nonlinearities of the waves, term E represents dissipation due to breaking, term F represents losses
due to bottom friction, and term G represents losses due to percolation. Many different algebraic forms have
been suggested for the various S; three references that provide examples are WAMDI (1988), Sobey and
Young (1986), and Young (1988). Since they are complicated and cannot be used in manual computations,
their algebraic form is not provided here. More detailed discussion of spectral wave mechanics may be found
in Leblond and Mysak (1978), Hasselmann (1962, 1963a, 1963b), Hasselmann et al. (1973), Barnett (1968),
Phillips (1977), Resio (1981), WAMDI (1988), and in Parts II-1 and II-2.

(3) Surface wave motions produce a velocity field that extends to some depth in the water column. This
depth for a deepwater wave is L/2 where L is the deepwater wave length. If the water depth is less than L/2,
the motion extends to the bottom. In cases where the wave motion interacts with the bottom, several physical
changes occur as shown in Part II-1: the celerity C and group velocity C, are changed, as is the wavelength.
If the waves are propagating in a region in which the depths are variable (and sufficiently shallow so that
the wave interacts with the bottom), the changes in wave speed change the direction of wave travel
and change the amplitude of the wave (refraction and shoaling). 1f the patterns of wave propagation
lead to strong focusing of waves, wave energy may be radiated away from the convergence by diffraction
(Penny and Price 1944; Berkhoff 1972). The interaction of the wave with the bottom produces a boundary
layer, which will result in the loss of wave energy to the bed due to bottom friction (Term F) resulting from
bottom materials and bed forms (Bagnold 1946). Ifthe bed is reasonably porous, the pressure field associated
with the passing wave can induce flow into and out of the bed (Bretschneider and Reid 1953), resulting in
energy losses due to percolation (Term G). If the bed is muddy or visco-elastic other losses may occur
(Forristall and Reece 1985). Typically, only one of the bottom loss mechanisms is dominant at one locality
although in a large, complicated area a variety of bottom types may exist with differing mechanisms
important at different sites along the path of wave travel. However, the bottom-loss terms are often not
applied because inadequate information is available on bottom-material composition to allow their proper use.

(4) Wind input, interwave transfers, and breaking follow the principles outlined in Part 11-2, though
modified due to depth effects. Of the three, wave breaking is most affected by depth. If shoals exist,
depth-induced breaking may be significant even though it is outside of the surf zone. Surf zone wave
breaking is treated in Part [1-4. The effect of sporadic breaking of large waves on shoals or other depth-
related features outside the surf zone is not negligible in high sea states. Even in deep water, waves break
through whitecapping or oversteepening due to superposition of large waves. The interaction of waves and
an underlying current can result in refraction of the waves and wave breaking (Jonsson 1978; Peregrine
1976).

c. Types of wave transformation.
(1) Three classic cases of wave transformation describe most situations found in coastal engineering:

(a) A large storm generates deepwater waves that propagate across shallower water while the waves
continue to grow due to wind.

(b) Alarge storm generates winds in an area remote from the site of interest and as waves cross shallower
water with negligible wind, they propagate to the site as swell.

(¢) Wind blows over an area of shallow water generating waves that grow so large as to interact with the
bottom (no propagation of waves from deeper water into the site).

Estimation of Nearshore Waves 11-3-5



EM 1110-2-1100 (Part Il)
30 Apr 02

(2) All cases are important, but the first and third are relatively complex and require a numerical model
for reasonable treatment. The second case, swell propagating across a shallow region, is a classic building
block that has served as a basis for many coastal engineering studies. Often the swell is approximated by a
monochromatic wave, and simple refraction and shoaling methods are used to make nearshore-wave
estimates. Since the process of refraction and shoaling is important in coastal engineering, the next section
is devoted to deriving some simple approaches to illustrate the need for more complex approaches.

(3) Oftenitis necessary for engineers to make a steady-state assumption: i.e., wave properties along the
outer boundary of the region of interest and other external forcing are assumed not to vary with time. This
is appropriate if the rate of variation of the wave field in time is very slow compared to the time required for
the waves to pass from the outer boundary to the shore. If this is not the case, then a time-dependent model
isrequired. Cases (a) and (c) would more typically require a time-dependent model. Time-dependent models
are not discussed here due to their complexity. Examples are described by Resio (1981), Jensen et al. (1987),
WAMDI (1988), Young (1988), SWAMP Group (1985), SWIM Group (1985), and Demirbilek and Webster
(1992a,b).

lI-3-3. Refraction and Shoaling

In order to understand wave refraction and shoaling, consider the case of a steady-state, monochromatic (and
thereby long-crested) wave propagating across a region in which there is a straight shoreline with all depth
contours evenly spaced and parallel to the shoreline (Figure 11-3-3). In addition, no current is present. If a
wave crest initially has some angle of approach to the shore other than 0 deg, part of the wave (point A) will
be in shallower water than another part (point B). Because the depth at 4, 4, is less than the depth at B, /,,
the speed of the wave at A will be slower than that at B because

C, = % tanh kh, < % tanh kh, = C, (11-3-2)

The speed differential along the wave crest causes the crest to turn more parallel to shore. The propagation
problem becomes one of plotting the direction of wave approach and calculating its height as the wave
propagates from deep to shallow water. For the case of monochromatic waves, wave period remains constant
(Part II-1). In the case of an irregular wave train, the transformation process may affect waves at each
frequency differently; consequently, the peak period of the wave field may shift.

a. Wave rays.

(1) The wave-propagation problem can often be readily visualized by construction of wave rays. If a
point on a wave crest is selected and a wave crest orthogonal is drawn, the path traced out by the orthogonal
as the wave crest propagates onshore is called a ray. Hence, a group of wave rays map the path of travel of
the wave crest. For simple bathymetry, a group of rays can be constructed by hand to show the wave
transformation, although it is a tedious procedure. Graphical computer programs also exist to automate this
process (Harrison and Wilson 1964, Dobson 1967, Noda et al. 1974), but to a large degree such approaches
have been superseded by the numerical methods discussed in Part II, Section 3-5. Refraction and shoaling
analyses typically try to specify the wave height and direction along a ray.
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SHORELINE

Figure 1I-3-3. Straight shore with all depth contours evenly spaced and parallel to
the shoreline

(2) Figure I1-3-4 provides idealized plots of wave rays for several typical types of bathymetry. Simple
parallel contours tend to reduce the energy of waves inshore if they approach at an angle. Shoals tend to
focus rays onto the shoals and spread energy out to either side. Canyons tend to focus energy to either side
and reduce energy over the head of the canyon. The amount of reduction or amplification will depend not
only on bathymetry, but on the initial angle of approach and period of the waves. For natural sea states that
have energy spread over arange of frequencies and directions, reduction and amplification are also dependent
upon the directional spread of energy (Vincent and Briggs 1989).

(3) Refraction and shoaling have been derived and treated widely. The following presentation follows
that of Dean and Dalrymple (1991) very closely. Other explanations are provided in Ippen (1966), the Shore
Protection Manual (1984), and Herbich (1990).

b. Straight and parallel contours.

(1) First, the equation for specifying how wave angle changes along the ray is developed, followed by
the equation for wave height. The derivation is only for parallel and straight contours with no currents
present. The x-component of the coordinate system will be taken to be orthogonal to the shoreline; the y-
coordinate is taken to be shore-parallel. The straight and shore-parallel contours assumption will imply that
any derivative in the y-direction is zero because dh/dy is zero.
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Figure 1I-3-4. Idealized plots of wave rays
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(2) For a monochromatic wave, the wave phase function
Q (x,y,0) = (k cos® + k sin@ - o) (11-3-3)
can be used to define the wave number vector K by
k=vQ (11-3-4)
(3) Since K is a vector, one can take the curl of K
Vxk=0 (II-3-5)

which is zero because K by definition is the gradient of a scaler and the curl of a gradient is zero.
(4) Substituting the components of K, Equation II-3-5 yields

d(k sin®) _ J(k cos0) _ 0

1I-3-6
ox dy ( )

(5) Since the problem is defined to have straight and parallel contours, derivatives in the y direction are
zero and using the dispersion relation linking & and C (and noting that £ =2z/CT and wave period is constant)
Equation II-3-6 simplifies to

dfsind) (11-3-7)
dx\ C

or
sin 0

= constant (I1-3-8)

(6) Let C, be the deepwater celerity of the wave. In deep water, sin (6,)/c,is known if the angle of the
wave is known, so Equation I1-3-8 yields

sin § _ sin 6,

c C,

(11-3-9)

along a ray. This identity is the equivalent of Snell’s law in optics. The equation can be readily solved by
starting with a point on the wave crest in deep water and incrementally estimating the change in C because
of changes in depth. The direction o of wave travel is then estimated plotting the path traced by the ray. The
size of increment is selected to provide a smooth estimate of the ray.

(7) The wave-height variation along the ray can be estimated by considering two rays closely spaced
together (Figure I1-3-5). In deep water, the energy flux (EC,), which is also EC,, across the wave crest
distance b, can be estimated by (ECn),b,. Considering a location a short distance along the ray, the energy
flux is (ECn),b,. Since the rays are orthogonal to the wave crest, there should be no transfer of energy across
the rays and conservation principles give
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Figure 1I-3-5. Wave-height variation along a wave ray
(ECn)yb, = (ECn),b, (11-3-10)

(8) From Part II-1, the height and energy of a monochromatic wave are given by

pgH’ (I1-3-11)

and the wave height at location 1 is thus related to the wave height in deep water by

C, | b
H =H, |2 |2 (11-3-12)
C, \ b

(9) This equation is usually written as

H, = H, K, K, (11-3-13)

where K is called the shoaling coefficient and K, is the refraction coefficient. From the case of simple,
straight, and parallel contours, the value at b, can be found from b,

I 1 : I
K - & D _ CcosS 90 D) _ 1- Sll’l2 90 2 (11_3_14)
g b, cos 0, 1 -sin? 0,
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by noting that ray 2 is essentially ray 1 shifted downcoast. For straight and parallel contours, Figure I1I-3-6
is a solution nomogram. This is automated in the ACES program (Leenknecht, Szuwalski, and Sherlock
1992) and the program NMLONG (Kraus 1991). Figure II-3-6 provides the local wave angle K, and KK
in terms of initial deepwater wave angle and d/gT°. Although the bathymetry of most coasts is more
complicated than this, these procedures provide a quick way of estimating approximate wave approach angles.

¢.  Realistic bathymetry.

(1) The previous discussion was for the case of straight and parallel contours. If the topography has
variations in the y direction, then the full equation must be used. Dean and Dalrymple (1991) show the
derivation in detail for ray theory in this case. Basically, the (x,y) coordinate system is transformed to (s,7)
coordinates where s is a coordinate along a ray and » is a coordinate orthogonal to it. Algebraically, the
equation for wave angle can be derived in the ray-based coordinate system

® 1ok _1ac

. (11-3-15)
os k on C on

and the ray path defined by
s _ - (11-3-16)
dt
& cosh (11-3-17)
dt
D - sino (II-3-18)
dt

(2) Equation II-3-15 represents the discussion at the beginning of this section; the rate at which the wave
turns depends upon the local gradient in wave speed along the wave crest. Munk and Arthur's computation
for the refraction coefficient is more complicated: defining

1
112
x -[L 11-3-19
r (B) ( )

where B = b/b, then

2
L j_ﬁ fgB=0 (11-3-20)
ds S

with
Ps) - cos0 E sin©0 E (I1-3-21)
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EXAMPLE PROBLEM II-3-1
FIND:
Wave height A and angle 6 at water depths of 200, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 16, 14, 12, 10, 8,
6, and 4 m for deepwater wave angles of 0°, 15°, and 45°.

GIVEN:
A wave 1 m high and 15-sec period in 500 m of water, with a plane, sloping beach.

SOLUTION:
Routine solutions for a plane beach can be obtained using the ACES wave transformation code, by direct
calculation, or graphically using Figure I1-3-6.

Table 1I-3-1 provides the results obtained by directly using the ACES code. On a personal computer with a
486-level microprocessor, the results may be obtained in seconds.

For a wave with a depth of 10 m and an initial wave angle of 45 deg, wave height and angle are calculated as
follows:

Since the deepwater wave length of a 15-sec wave is

L, = 1.56 T? = 1.56 (15)* = 351 m

and since 500 m is greater than /2, the given initial wave is a deepwater condition. The wave length of the wave
in 10 m must be estimated from

g T’
2n

L =

tanh ( 2n d)

and is 144 m (see Problem II-1-1).

The shoaling coefficient K can be estimated from
1
[ Cw)2
: Cgl

Lo -Ltasery = 24 - 117 mys
2 2 2

In deep water C,, for a 15-sec wave is

The group velocity is given by

(1 . 4ndlL ] g_Ttanh(sz)

1
2 sinh (4nd/L)) 2m
Substitution of =10 m, L = 144 m, T = 15 sec, and g = 9.8 m/sec’ yields 9.05 m/s.

1
K - 11.70)3 _ | 14
9.05

Solution for K, involves

1 - sin’0,

(Continued)
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Example Problem II-3-1 (Concluded)

In deep water, 0 is 45 deg. From Equation I1-3-9,
C, sin 0,

Co
In deep water C,= 1.56T = 23.4 m/s. In 10 m of water, C, = L /T =144 m/15,=9.60 m/s.

sin 0 =

9.6 sin (45°) _ 9.6 (7.07) _

sin 0 = 0.29
23.4 23.4
1
1 - sin®0, |2 1 - 2) 1
K =" | L -0.707)" |3 _ [ 0507 _ 0.86
"1 - sine 1 - (0.29) 0.91

Therefore: H,= H, K, K, = 1(1.14) (0.86) = 0.98 m.

The angle of approach is arc sin (sin0) = 16.8°. Thus, the I-m, 15-sec wave has changed 2 percent in height by
28.2 deg in angle of approach.

The largest differences caused by refraction and shoaling will be seen at the shallowest depths. From Table II-3-1
at the 4-m depth, the wave height for a 45-deg initial angle is 1.18 m compared to 1.39 m for a wave with initial
angle of 0 deg. If the initial angle had been 70 deg, K, K, would be about 0.8.

Table 11-3-1
Example Problem II-3-1 Refraction and Shoaling Results
Depth 6,=0° 6, = 15° 6, = 45°
€] H 6 H €] H
500 0 1.00 15.0 1.00 45.0 1.00
400 0 1.00 15.0 1.00 45.0 1.00
300 0 1.00 15.0 1.00 45.0 1.00
200 0 1.00 15.0 1.00 45.0 1.00
100 0 0.94 14.3 0.94 42.4 0.92
90 0 0.93 14.0 0.93 41.2 0.91
I 80 0 0.93 13.7 0.92 304 0.89 I

70 0 0.92 13.2 0.91 38.9 0.88
60 0 0.91 12.7 0.91 37.0 0.86
50 0 0.91 12.0 0.91 34.5 0.85
40 0 0.92 11.1 0.92 31.8 0.84
30 0 0.95 9.9 0.94 28.1 0.85
20 0 1.00 8.4 0.99 23.4 0.88
18 0 1.02 8.0 1.01 22.3 0.89
16 0 1.04 7.8 1.03 21.1 0.91
14 0 1.07 7.1 1.05 19.8 0.92
12 0 1.10 6.6 1.08 18.4 0.95
10 0 1.14 6.1 1.12 16.8 0.98

8 0 1.19 5.5 1.17 15.1 1.02

6 0 1.27 4.8 1.25 13.15 1.08

4 0 1.39 3.9 1.37 10.8 1.18
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and

c 2 2 . 2
a(s) = sin“f 0°C > sin® cos® o°C + cos209°C (11-3-22)
C axz C ox ay ay

(3) These equations are solved for a set of rays for each wave component of interest (typically
combinations of periods and directions). Since this analysis is linear, often a unit wave height is applied for
the offshore wave height, which yields a series of refraction and shoaling coefficients at sites of interest. Then
the wave transformation for any non-unit initial wave height is obtained by multiplication. This is permissible
as long as wave breaking does not occur along a wave ray.

d. Problems in ray approach.

(1) Estimating wave propagation patterns with wave rays is intuitively and visually satisfying, and often
very useful. The engineer obtains a good picture of how a wave propagates to a site. However, the procedure
has several drawbacks when applied to even mildly irregular bathymetry. One problem is ray
convergence/crossing; another is bathymetry inadequacy on ray paths.

(2) An example calculation from Noda et al. (1974) illustrates the basic problem. Bathymetry is highly
regular, but has undulatory contours (Figure 11-3-7). From the ray pattern, convergence and divergence of
adjacent rays are apparent as the waves sweep over the undulations in bathymetry. However, in shallow
water near the shore, the rays are sufficiently perturbed by the bathymetry that several converge, with the ray
spacing going to zero (in some ray programs the rays actually are computed to cross). Remembering the
conservation of wave energy argument used to define the refraction coefficient, the flux across an orthogonal
between the rays remains constant. As the spacing between rays approaches zero, the energy flux becomes
infinite. Practically, if strong wave convergence occurs, breakin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>